某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻,地面利用原地面均不花錢,正面用鐵柵,每米長造價40元,兩側墻砌磚,每米長造價45元,屋頂每平方米造價20元.
(1)倉庫面積的最大允許值是多少?
(2)為使面積達到最大而實際投入又不超過預算,正面鐵柵應設計為多長?
(1)100平分米;(2)15米
【解析】
試題分析:(1)設鐵柵長米,側墻寬米,
則由題意得:, 3分
即 ① (以上兩處的“”號寫成“”號不扣分)
由于 ②,
由①②可得,,
所以的最大允許值為100平分米. 8分
(2)由(1)得當面積達到最大而實際投入又不超過預算時,
有:且,從而.
即正面鐵柵應設計為15米長. 12分
考點:函數(shù)的實際應用;基本不等式。
點評:面對實際問題,能夠迅速的建立數(shù)學模型是一種重要的基本技能。比如此題,在讀題時把題目中提供的“條件”逐條的翻譯成“數(shù)學語言”,這個過程就是數(shù)學建模的過程。做此題的關鍵就是列出不等式。
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側墻砌磚,每米造價45元,頂部每平方米造價20元,試算:倉庫底面積S的最大允許值是多少?此時鐵柵長為多少?
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年山東省聊城外國語學校高三(上)第三次月考數(shù)學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com