如圖,△ABC為一個等腰三角形的空地,底邊AB長為4(百米),腰長為3(百米),現(xiàn)決定在空地上修一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形周長相等,面積分別為S1和S2,
(1)若小路一端E為AC中點,求小路的長度;
(2)求的最小值.

【答案】分析:(1)小路一端E為AC中點,則F在BC,利用四邊形和三角形周長相等.求出CF,然后求出cosC,利用余弦定理求小路EF的長度;
(2)若E、F在兩腰上,設(shè)CE=x,CF=y,表示出的表達式,通過基本不等式求出最小值.
若點E、F在一腰和底上,設(shè)E在CA上,F(xiàn)在AB上,設(shè)AE=x,AF=y,表示出的表達式,通過基本不等式求出最小值.
解答:解:(1)易知F在BC上,則AB+BF+FE+AE=EC+EF+CF,∵E為AC中點,∴AE=EC,
BF=4-CF,上式化為BF=,即CF=,,
根據(jù)余弦定理,EF2=CF2+CE2-2CF•CEcosC==,
∴EF=
(2)若E、F在兩腰上,設(shè)CE=x,CF=y,
∴x+y=5,

當(dāng)且僅當(dāng)時取“=”號
若點E、F在一腰和底上,設(shè)E在CA上,F(xiàn)在AB上,設(shè)AE=x,AF=y,
∴x+y=5,
當(dāng)且僅當(dāng)時取“=”號
所以最小值為
點評:本題是中檔題,考查三角形的解法,余弦定理、基本不等式的應(yīng)用,分類討論思想的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC為一個等腰三角形形狀的空地,腰CA的長為3(百米),底AB的長為4(百米).現(xiàn)決定在空地內(nèi)筑一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形的周長相等、面積分別為S1和S2
(1)若小路一端E為AC的中點,求此時小路的長度;
(2)求
S1S2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)如圖,△ABC為一個等腰三角形的空地,底邊AB長為4(百米),腰長為3(百米),現(xiàn)決定在空地上修一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形周長相等,面積分別為S1和S2
(1)若小路一端E為AC中點,求小路的長度;
(2)求
S1S2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三下學(xué)期開學(xué)質(zhì)量檢測數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分)如圖,△ABC為一個等腰三角形形狀的空地,腰CA的長為3(百米),底AB的長為4(百米).現(xiàn)決定在該空地內(nèi)筑一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形的周長相等、面積分別為S1和S2.

 

 

(1) 若小路一端E為AC的中點,求此時小路的長度;

(2) 求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省深圳市高級中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

如圖,△ABC為一個等腰三角形的空地,底邊AB長為4(百米),腰長為3(百米),現(xiàn)決定在空地上修一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形周長相等,面積分別為S1和S2,
(1)若小路一端E為AC中點,求小路的長度;
(2)求的最小值.

查看答案和解析>>

同步練習(xí)冊答案