【題目】已知拋物線的焦點(diǎn)為F,直線l過點(diǎn)

1)若點(diǎn)F到直線l的距離為,求直線l的斜率;

2)設(shè)A,B為拋物線上兩點(diǎn),且AB不與x軸垂直,若線段AB的垂直平分線恰過點(diǎn)M,求證:線段AB中點(diǎn)的橫坐標(biāo)為定值

【答案】12)證明見詳解.

【解析】

1)設(shè)出直線方程,根據(jù)點(diǎn)到直線的距離公式,即可求得直線;

2)設(shè)出直線方程,聯(lián)立拋物線方程,根據(jù)韋達(dá)定理,利用直線垂直,從而得到的斜率關(guān)系,即可證明.

1)由條件知直線l的斜率存在,設(shè)為,

則直線l的方程為:,

從而焦點(diǎn)到直線l的距離為,

平方化簡得:,

故直線斜率為:.

2)證明:設(shè)直線AB的方程為

聯(lián)立拋物線方程,消元得:

設(shè),

線段AB的中點(diǎn)為,

因?yàn)?/span>,

M點(diǎn)坐標(biāo)代入后整理得:

即可得:

為定值.即證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求證:正三角形各頂點(diǎn)到其外接圓上任一切線的距離之和為定值;

(2)猜想空間命題“正四面體各頂點(diǎn)到其外接球的任一切面的距離之和為定值”是否成立?證明你的結(jié)論.注:與球只有一個公共點(diǎn)的平面叫做球的切面,這個公共點(diǎn)叫做切點(diǎn),切點(diǎn)與球心的連線垂直于切面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求切線的方程;

(Ⅱ)若的極大值和極小值分別為,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將橢圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼囊话耄们C,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

已知點(diǎn)且直線l與曲線C交于A、B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的說法,正確的是(

A.展開式中的二項(xiàng)式系數(shù)之和為1024B.展開式中第6項(xiàng)的二項(xiàng)式系數(shù)最大

C.展開式中第5項(xiàng)和第7項(xiàng)的二項(xiàng)式系數(shù)最大D.展開式中第6項(xiàng)的系數(shù)最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】蚌埠市某中學(xué)高三年級從甲(文)、乙(理)兩個科組各選出名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲組學(xué)生的平均分是,乙組學(xué)生成績的中位數(shù)是

1)求的值;

2)計算甲組位學(xué)生成績的方差;

3)從成績在分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在高二數(shù)學(xué)競賽初賽后,對90分及以上的成績進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示,若分?jǐn)?shù)段的參賽學(xué)生人數(shù)為2.

1)求該校成績在分?jǐn)?shù)段的參賽學(xué)生人數(shù);

2)估計90分及以上的學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù)(結(jié)果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒有命中得0分;在B點(diǎn)命中的概率為,命中一次記2分,沒有命中得0分,用隨機(jī)變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認(rèn)為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3.

(1)若該選手選擇方案甲,求測試結(jié)束后所得分的分布列和數(shù)學(xué)期望.

(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)AB以及CD的中點(diǎn)P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點(diǎn)O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為km

(I)設(shè),將表示成的函數(shù)關(guān)系式;

(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.

查看答案和解析>>

同步練習(xí)冊答案