已知命題P:方程x2+(a2-1)x+a-2=0的兩根為x1和x2,且x1<1<x2<2;命題q:方程恒成立;若P或q為真,P且q為假,求實數(shù)a的取值范圍.
【答案】分析:根據(jù)方程的根與函數(shù)零點的對應關系,根據(jù)方程x2+(a2-1)x+a-2=0的兩根為x1和x2,且x1<1<x2<2,我們可得對應函數(shù)f(x)=x2+(a2-1)x+a-2的兩個零點分別位于區(qū)間(-∞,1),(1,2)上,結合二次函數(shù)的圖象和性質可得解不等式可得命題p為真時,參數(shù)a的范圍,根據(jù)方程恒成立,結合g(x)=恒成立,我們易求出命題q為真時,參數(shù)a的范圍,結合P或q為真,P且q為假,可得P與q中必然一真一假,分別討論p真q假時與p假q真時參數(shù)a的范圍,綜合討論結果,即可得到參數(shù)a的范圍.
解答:解:∵方程x2+(a2-1)x+a-2=0的兩根為x1和x2,
若x1<1<x2<2成立
令f(x)=x2+(a2-1)x+a-2


解得a∈(-2,-)∪(0,1)
令g(x)=
則g(x)恒成立
若方程恒成立
則a∈(-∞,
又∵P或q為真,P且q為假,
故P與q中必然一真一假
當p真q假時,a∈[,1)
當p假q真時,a∈(-∞,-2]∪[-,0]
綜上實數(shù)a的取值范圍為:(-∞,-2]∪[-,0]∪[,1)
點評:本題考查的知識點是命題的真假判斷與應用,方程根與函數(shù)零點的關系,二次函數(shù)的圖象和性質,絕對值函數(shù)的圖象和性質,函數(shù)恒成立問題,其中分別求出命題p,q為真是參數(shù)a的取值范圍,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的負實根;q:方程mx2+(m-1)x+m=0無實根.若“p或q”為真,p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:方程x2+mx+1=0有兩個不相等的負實數(shù)根;命題Q:函數(shù)f(x)=lg[4x2+(m-2)x+1]的定義域為實數(shù)集R,若P或Q為真,P且Q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:“方程x2+
y2m
=1表示焦點在y軸上的橢圓”;命題Q:“方程2x2-4x+m=0沒有實數(shù)根”.若P∧Q假,P∨Q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:方程x2-2mx+m=0沒有實數(shù)根;
命題Q:?x∈R,x2+mx+1≥0.
(1)寫出命題Q的否定“¬Q”;
(2)如果“P∨Q”為真命題,“P∧Q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的正實數(shù)根,命題q:方程4x2+4(m+2)x+1=0無實數(shù)根.
(1)若p為真命題,求m的取值范圍;
(2)若q為真命題,求m的取值范圍;
(3)若“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

同步練習冊答案