(2013•石景山區(qū)一模)已知函數(shù)f(x)=sin(2x+
π
6
)+cos2x

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c.已知f(A)=
3
2
,a=2,B=
π
3
,求△ABC的面積.
分析:(Ⅰ)利用兩角和差的正弦公化簡函數(shù)的解析式為
3
sin(2x+
π
3
),令 2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈z,求得x的范圍,即可求得f(x)的單調(diào)遞增區(qū)間.
(Ⅱ)由已知f(A)=
3
2
,可得 sin(2A+
π
3
)=
1
2
,求得A=
π
4
,再利用正弦定理求得b的值,由三角形內(nèi)角和公式求得C的值,再由 S=
1
2
ab•sinC,運算求得結(jié)果.
解答:解:(Ⅰ)f(x)=sin(2x+
π
6
)+cos2x
=sin2xcos
π
6
+cos2xsin
π
6
+cos2x
=
3
2
sin2x+
3
2
cos2x=
3
1
2
sin2x+
3
2
cos2x)=
3
sin(2x+
π
3
).
令 2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈z,求得 kπ-
12
≤x≤kπ+
π
12
,
函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-
12
,kπ+
π
12
],k∈z.
(Ⅱ)由已知f(A)=
3
2
,可得 sin(2A+
π
3
)=
1
2
,
因為A為△ABC內(nèi)角,由題意知0<A<π,所以
π
3
<2A+
π
3
3
,
因此,2A+
π
3
=
6
,解得A=
π
4

由正弦定理
a
sinA
=
b
sinB
,得b=
6
,…(10分)
由A=
π
4
,由B=
π
3
,可得 sinC=
2
+
6
4
,…(12分)
∴S=
1
2
ab•sinC=
1
2
×2×
6
×
2
+
6
4
=
3+
3
2
點評:本題主要考查兩角和差的正弦公式的應用,正弦函數(shù)的單調(diào)性,正弦定理以及根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•石景山區(qū)二模)對于直線m,n和平面α,β,使m⊥α成立的一個充分條件是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•石景山區(qū)一模)若直角坐標平面內(nèi)的兩點P、Q滿足條件:
①P、Q都在函數(shù)y=f(x)的圖象上;
②P、Q關(guān)于原點對稱,則稱點對[P,Q]是函數(shù)y=f(x)的一對“友好點對”(點對[P,Q]與[Q,P]看作同一對“友好點對”),
已知函數(shù)f(x)=
log2x(x>0)
-x2-4x(x≤0)
,則此函數(shù)的“友好點對”有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•石景山區(qū)一模)設(shè)集合M={x|x2≤4),N={x|log2 x≥1},則M∩N等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•石景山區(qū)一模)某四棱錐的三視圖如圖所示,則最長的一條側(cè)棱長度是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•石景山區(qū)一模)將一顆骰子擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為m,第二次出現(xiàn)的點數(shù)為n,向量
p
=(m,n),
q
=(3,6),則向量
p
q
共線的概率為( 。

查看答案和解析>>

同步練習冊答案