【題目】在①.②的面積,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,問(wèn)題中的是否為等邊三角形,請(qǐng)說(shuō)明理由.在中,分別為內(nèi)角的對(duì)邊,且,________,試判斷是否為等邊三角形?(注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分)
【答案】若選①,等邊三角形;若選②,等邊三角形;若選③,等邊三角形.
【解析】
利用正弦定理邊化角整理可求得,進(jìn)而得到,利用余弦定理可構(gòu)造方程,得到;
若選①,利用余弦定理的結(jié)論可求得,進(jìn)而求得,從而得到結(jié)論;
若選②,根據(jù)三角形面積公式可求得,進(jìn)而求得,從而得到結(jié)論;
若選③,利用正弦定理角化邊可求得,進(jìn)而求得,從而得到結(jié)論.
由得:,
即,
,,,又,.
由余弦定理得:.
若選①,則,解得:,
,又,則是等邊三角形.
若選②,,解得:,
,即,又,則是等邊三角形.
若選③,,,,
由正弦定理得:,即,
,即,又,則是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)是橢圓的左焦點(diǎn),直線:與軸交于點(diǎn),為橢圓的長(zhǎng)軸,已知,且,過(guò)點(diǎn)作斜率為直線與橢圓相交于不同的兩點(diǎn) ,
(1)當(dāng)時(shí),線段的中點(diǎn)為,過(guò)作交軸于點(diǎn),求;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在圓中有這樣的結(jié)論:對(duì)圓上任意一點(diǎn),設(shè)、是圓和軸的兩交點(diǎn),且直線和的斜率都存在,則它們的斜率之積為定值-1.試將該結(jié)論類(lèi)比到橢圓,并給出證明.
(2)已知橢圓,,,設(shè)直線與橢圓交于不同于、的兩點(diǎn)、,記直線、、的斜率分別為、、.
(。┤糁本過(guò)定點(diǎn),則是否為定值.若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.
(ⅱ)若,求所有整數(shù),使得直線變化時(shí),總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年底,湖北省武漢市等多個(gè)地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時(shí)有效地對(duì)疫情數(shù)據(jù)進(jìn)行流行病學(xué)統(tǒng)計(jì)分析,某地研究機(jī)構(gòu)針對(duì)該地實(shí)際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類(lèi):有武漢旅行史(無(wú)接觸史),無(wú)武漢旅行史(無(wú)接觸史),有武漢旅行史(有接觸史)和無(wú)武漢旅行史(有接觸史),統(tǒng)計(jì)得到以下相關(guān)數(shù)據(jù).
(1)請(qǐng)將列聯(lián)表填寫(xiě)完整:
有接觸史 | 無(wú)接觸史 | 總計(jì) | |
有武漢旅行史 | 27 | ||
無(wú)武漢旅行史 | 18 | ||
總計(jì) | 27 | 54 |
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為2,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)為的左焦點(diǎn),點(diǎn)為直線上任意一點(diǎn),過(guò)點(diǎn)作的垂線交于兩點(diǎn),
(。┳C明:平分線段(其中為坐標(biāo)原點(diǎn));
(ⅱ)當(dāng)取最小值時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=4,AD=2,點(diǎn)E是DC的中點(diǎn),將△ADE沿AE折起,使平面ADE⊥平面ABCE,連結(jié)DB、DC、EB.
(1)求證:平面ADE⊥平面BDE;
(2)求AD與平面BDC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將四個(gè)不同的小球放入三個(gè)分別標(biāo)有1、2、3號(hào)的盒子中,不允許有空盒子的放法有多少種?下列結(jié)論正確的有( ).
A.B.C.D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物中的一種,即自己的屬相.現(xiàn)有印著十二生肖圖案的毛絨娃娃各一個(gè),小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這十二個(gè)毛絨娃娃中各隨機(jī)取一個(gè)(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com