(本小題滿分14分)若衛(wèi)星運(yùn)行軌道橢圓的離心率為,地
心為右焦點,
(1)求橢圓方程 ;
(2)若P為橢圓上一動點,求的最小值。
解:(1)橢圓標(biāo)準(zhǔn)方程……………………2分
     …………………………………………………4分
,……………………………………………6分
所以橢圓標(biāo)準(zhǔn)方程為,………………………………………8分
(2)設(shè)P,因為P為橢圓上,∴,即………10分

當(dāng)時,取得最小值……………………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖有公共左頂點和公共左焦點F的橢圓Ⅰ與Ⅱ的長半軸的長分別為a1a2,半焦距分別為c1c2,且橢圓Ⅱ的右頂點為橢圓Ⅰ的中心.則下列結(jié)論不正確的是 (  )
A.a1c1>a2c2B.a1c1a2c2
C.a1c2<a2c1D.a1c2>a2c1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓=1與橢圓=l(l>0)有 (    )
A.相等的焦距B.相同的離心率C.相同的準(zhǔn)線D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點且與有相同漸近線的雙曲線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分).
如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;
(2)求弦AC中點的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若P是以F1F2為焦點的橢圓=1上一點,則DPF1F2的周長等于_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是橢圓上一點,是橢圓的焦點,則的最大值是( )    
A.4B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與橢圓有相同的焦點且過點P的雙曲線方程是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把橢圓的長軸分成等分,過每個分點作軸的垂線交橢圓的上半部分于八個點,是橢圓的左焦點,則
         .

查看答案和解析>>

同步練習(xí)冊答案