【題目】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0; ②f(0)f(1)<0;
③f(0)f(3)>0; ④f(0)f(3)<0.
其中正確結(jié)論的序號(hào)是________.
【答案】②③
【解析】∵f′(x)=3x2-12x+9=3(x-1)(x-3),
由f′(x)<0,得1<x<3,
由f′(x)>0,
得x<1或x>3,
∴f(x)在區(qū)間(1,3)上是減函數(shù),在區(qū)間(-∞,1),(3,+∞)上是增函數(shù).
又a<b<c,f(a)=f(b)=f(c)=0,
∴y極大值=f(1)=4-abc>0,
y極小值=f(3)=-abc<0.
∴0<abc<4.
∴a,b,c均大于零,或者a<0,b<0,c>0.又x=1,x=3為函數(shù)f(x)的極值點(diǎn),后一種情況不可能成立,如圖.
∴f(0)<0.∴f(0)f(1)<0,f(0)f(3)>0.∴正確結(jié)論的序號(hào)是②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,建立平面直角坐標(biāo)系, 軸在地平面上, 軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問(wèn)它的橫坐標(biāo)不超過(guò)多少時(shí),炮彈可以擊中它?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué),給所有同學(xué)幾何和代數(shù)各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.統(tǒng)計(jì)情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | |||
女同學(xué) | |||
總計(jì) |
(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過(guò)多次測(cè)試發(fā)現(xiàn):女生甲解答一道幾何題所用的時(shí)間在分鐘,女生乙解答一道幾何題所用的時(shí)間在分鐘,現(xiàn)甲、乙兩人獨(dú)立解答同一道幾何題,求乙比甲先解答完的概率;
(3)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行研究,記甲、乙兩名女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體中,,,點(diǎn)為的中點(diǎn).
(1)求證:直線∥平面;
(2)求證:平面 平面;
(3)求證:直線 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號(hào)召,某單位指導(dǎo)一貧困村通過(guò)種植紫甘薯來(lái)提高經(jīng)濟(jì)收入.紫甘薯對(duì)環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長(zhǎng)的趨勢(shì).下表給出了2018年種植的一批試驗(yàn)紫甘薯在不同溫度時(shí)6組死亡的株數(shù):
溫度(單位:℃) | 21 | 23 | 24 | 27 | 29 | 32 |
死亡數(shù)(單位:株) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算:,,,.
其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù),.
(1)與是否有較強(qiáng)的線性相關(guān)性? 請(qǐng)計(jì)算相關(guān)系數(shù)(精確到)說(shuō)明.
(2)并求關(guān)于的回歸方程(和都精確到);
(3)用(2)中的線性回歸模型預(yù)測(cè)溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).
附:對(duì)于一組數(shù)據(jù),,……,,
①線性相關(guān)系數(shù),通常情況下當(dāng)大于0.8時(shí),認(rèn)為兩
個(gè)變量有很強(qiáng)的線性相關(guān)性.
②其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)及圓:.
(1)若直線過(guò)點(diǎn)且與圓心的距離為1,求直線的方程;
(2)若過(guò)點(diǎn)的直線與圓交于、兩點(diǎn),且,求以為直徑的圓的方程;
(3)若直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得過(guò)點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,,,,在底面的射影為的中點(diǎn),是的中點(diǎn).
(1)證明:平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2n+2-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an·log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:,點(diǎn),過(guò)點(diǎn)M且垂直于CM的直線交圓C于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作圓C的切線,兩切線相交于點(diǎn)P,則過(guò)點(diǎn)P且平行于AB的直線方程為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com