定義在(一∞,+∞)上的函數(shù)f(x)是偶函數(shù),并且f(x)在[0,+∞)上是增函數(shù),若f(1)< f(1gx),那么x的取值范圍是________。

答案:
解析:

x>10或0<x  


提示:

解決本題的關(guān)鍵是畫(huà)出示意圖,同時(shí),要防止僅由1<lgx確定x的取值范圍,因?yàn)檫@里沒(méi)有給定lgx是正、還是負(fù)。

    ∵    ∴l(xiāng)gx>1或lgx<-1。

    ∴x>10,或0<x。這才是x的取值范圍。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大連一模)定義在R上的函數(shù)f(x)滿足f(3)=1,f(-2)=3,f′(x)為f(x)的導(dǎo)函數(shù),已知y=f′(x)的圖象如圖所示,且f′(x)有且只有一個(gè)零點(diǎn),若非負(fù)實(shí)數(shù)a,b滿足f(2a+b)≤1,f(-a-2b)≤3,則
b+2
a+1
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•薊縣一模)已知定義在R上的函數(shù)y=f(x)滿足一下三個(gè)條件:
①對(duì)于任意的x∈R,都有f(x+4)=f(x);
②對(duì)于任意的x1,x2∈R,且0≤x1≤x2≤2,都有f(x1)<f(x2);
③函數(shù)的圖象關(guān)于x=2對(duì)稱;
則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•金山區(qū)一模)若函數(shù)y=f(x) (x∈R)滿足:f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=|x|,函數(shù)y=g(x)是定義在R上的奇函數(shù),且x∈(0,+∞)時(shí),g(x)=log 3x,則函數(shù)y=f(x)的圖象與函數(shù)y=g(x)的圖象的交點(diǎn)個(gè)數(shù)為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)一模)設(shè)f(x)是定義在R上的函數(shù),對(duì)x∈R都有f(-x)=f(x),f(x)•f(x+2)=10,且當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
)x-1
,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)定義在區(qū)間[一1,1]上,且,又P()、Q()是其圖像上任意兩點(diǎn)().   

(1)求證:的圖像關(guān)于點(diǎn)(0,b)成中心對(duì)稱圖形;

(2)設(shè)直線PQ的斜率為,求證:<2;

(3)若0≤≤1,求證:<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案