數(shù)列1 ,2 ,3 ,4 ,…的前n項和為 .
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十四第五章第五節(jié)練習(xí)卷(解析版) 題型:解答題
已知某地今年年初擁有居民住房的總面積為a(單位:m2),其中有部分舊住房需要拆除.當(dāng)?shù)赜嘘P(guān)部門決定每年以當(dāng)年年初住房面積的10%建設(shè)新住房,同時也拆除面積為b(單位:m2)的舊住房.
(1)分別寫出第1年末和第2年末的實際住房面積的表達式.
(2)如果第5年末該地的住房面積正好比今年年初的住房面積增加了30%,則每年拆除的舊住房面積b是多少?(計算時取1.15=1.6)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十八第六章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
已知x,y均為正數(shù),且x≠y,則下列四個數(shù)中最大的一個是( )
(A)(+) (B)
(C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十五第六章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
若角α,β滿足-<α<β<π,則α-β的取值范圍是( )
(A)(-,) (B)(-,0) (C)(0,) (D)(-,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:解答題
定義:若數(shù)列{An}滿足An+1=,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是 “平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項公式及Tn關(guān)于n的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)等比數(shù)列{an}中,前n項和為Sn,已知S3=8,S6=7,則a7+a8+a9=( )
(A)(B)-(C)(D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十九第六章第五節(jié)練習(xí)卷(解析版) 題型:解答題
如圖所示,底面為平行四邊形ABCD的四棱錐P-ABCD中,E為PC的中點.求證:PA∥平面BDE.(要求注明每一步推理的大前提、小前提和結(jié)論,并最終把推理過程用簡略的形式表示出來)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:解答題
設(shè){an}是等差數(shù)列,{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通項公式.
(2)求數(shù)列{}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
等差數(shù)列{an}的前n項和為Sn,若a3+a17=10,則S19=( )
(A)55(B)95(C)100(D)不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com