16、三棱柱ABC-A′B′C′的底面是邊長為1cm 的正三角形,側(cè)面是長方形,側(cè)棱長為4cm,一個小蟲從A點(diǎn)出發(fā)沿表面一圈到達(dá)A′點(diǎn),則小蟲所行的最短路程為
5
cm.
分析:將三棱柱展開兩次如圖,不難發(fā)現(xiàn)最短距離是六個矩形對角線的連線,正好相當(dāng)于繞三棱柱轉(zhuǎn)兩次的最短路徑.
解答:解:將正三棱柱ABC-A1B1C1沿側(cè)棱CC1展開,
其側(cè)面展開圖如圖所示,
由圖中路線可得大矩形的對角線長即為所求結(jié)論.
故答案為:5
點(diǎn)評:本題考查棱柱的結(jié)構(gòu)特征,空間想象能力,幾何體的展開與折疊,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在三棱柱ABC-A′B′C′中,側(cè)面CBB′C′⊥底面ABC,∠B′BC=60°,
∠ACB=90°,且CB=CC′=CA.
(1)求證:平面AB′C⊥平面A′C′B;
(2)求異面直線A′B與AC′所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A′B′C′中,BC=2,CC=
2

(1)求證:A′C⊥BC′;
(2)請在線段CC′上確定一點(diǎn)P,使直線A′P與平面A′BC所成角的正弦等于
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A′B′C′中,AB=BC=BB′=a,∠ABC=90°,點(diǎn)E、F分別是棱AB、BC上的動點(diǎn),且AE=BF.
(I)求證:A′F⊥AB′.
(II)當(dāng)三棱錐B′-BEF的體積取得最大值時,求二面角B-B′F-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,△ABC的三邊長分別為AC=6、AB=8、BC=10,O′為其內(nèi)心;取O′A、O′B、O′C的中點(diǎn)A′、B′、C′,并按虛線剪拼成一個直三棱柱ABC-A′B′C′(如圖2),上下底面的內(nèi)心分別為O′與O;
(Ⅰ)求直三棱柱ABC-A′B′C′的體積;
(Ⅱ)直三棱柱ABC-A′B′C′中,設(shè)線段OO'與平面AB′C交于點(diǎn)P,求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,斜三棱柱ABC-A′B′C′中,底面是邊長為a的正三角形,側(cè)棱長為b,側(cè)棱AA′與底面相鄰兩邊AB,AC都成45°角.
(Ⅰ)求此斜三棱柱的表面積.
(Ⅱ)求三棱錐B′-ABC的體積.

查看答案和解析>>

同步練習(xí)冊答案