【題目】設(shè)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大,記點(diǎn)的軌跡為曲線(xiàn).

(1)求點(diǎn)的軌跡方程;

(2)若圓心在曲線(xiàn)上的動(dòng)圓過(guò)點(diǎn),試證明圓軸必相交,且截軸所得的弦長(zhǎng)為定值.

【答案】(1) ;(2)證明見(jiàn)解析.

【解析】試題分析

1)由題意可得曲線(xiàn)為拋物線(xiàn),根據(jù)拋物線(xiàn)的定義可得其方程.(2結(jié)合題意設(shè)出圓心的坐標(biāo),并根據(jù)圓過(guò)點(diǎn)A得到圓的標(biāo)準(zhǔn)方程,在圓方程中令后可得關(guān)于x的二次方程,根據(jù)此方程判別式可判斷圓與x軸相交,同時(shí)并根據(jù)數(shù)軸上兩點(diǎn)間的距離求出弦長(zhǎng)

試題解析:

1)依題意知,動(dòng)點(diǎn)到定點(diǎn) 的距離等于到直線(xiàn)的距離,

∴曲線(xiàn)是以原點(diǎn)為頂點(diǎn), 為焦點(diǎn)的拋物線(xiàn).

設(shè)曲線(xiàn)C的方程為,

,

∴曲線(xiàn)方程是

2)

設(shè)圓心為,

∵圓過(guò) ,

∴圓的方程為

∴圓軸必相交,

設(shè)圓M軸的兩交點(diǎn)分別為E ,G

, , 

,

=4

故圓截軸所得的弦長(zhǎng)為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中一年級(jí)600名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(1)從總體的600名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的單調(diào)函數(shù)f(x)滿(mǎn)足f(2),且對(duì)任意xyR,都有f(xy)f(x)f(y)

(1)求證:f(x)為奇函數(shù);

(2)f(k·3x)f(3x9x2)<0對(duì)任意xR恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列 滿(mǎn)足: , 或1().對(duì)任意,都存在,使得.,其中 且兩兩不相等.

(I)若.寫(xiě)出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號(hào);

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)記.若,證明: ;

(Ⅲ)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿(mǎn)足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知棱長(zhǎng)為1的正方體ABCDA1B1C1D1中,EF,M分別是線(xiàn)段ABAD、AA1的中點(diǎn),又P、Q分別在線(xiàn)段A1B1A1D1上,且A1PA1Qx(0<x<1).設(shè)平面MEF∩平面MPQ

l,現(xiàn)有下列結(jié)論:

l∥平面ABCD;

lAC;

③直線(xiàn)l與平面BCC1B1不垂直;

④當(dāng)x變化時(shí),l不是定直線(xiàn).

其中不成立的結(jié)論是________.(寫(xiě)出所有不成立結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱柱中,底面是正方形,且,

1)求證 ;

2)若動(dòng)點(diǎn)在棱上,試確定點(diǎn)的位置,使得直線(xiàn)與平面所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 的離心率為,上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn)、,直線(xiàn)、與直線(xiàn) 分別交于點(diǎn)、,面積的最大值為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求線(xiàn)段的長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (m,n∈R)在x=1處取得極值2.

(1)求f(x)的解析式;

(2)k為何值時(shí),方程f(x)-k=0只有1個(gè)根

(3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R,總存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案