18.現(xiàn)有某批次同一型號(hào)的產(chǎn)品共10件,其中有8件合格品,2件次品.
(Ⅰ)某檢驗(yàn)員從中有放回地連續(xù)抽取產(chǎn)品2次,每次隨機(jī)抽取1件,求兩次都取到次品的概率;
(Ⅱ)若該檢驗(yàn)員從中任意抽取2件,用X表示取出的2件產(chǎn)品中次品的件數(shù),求X的分布列.

分析 (Ⅰ)求出任取一件取到次品的概率,然后求解檢驗(yàn)員兩次都取到次品的概率.
(Ⅱ)判斷X的可能值,求出概率,然后求解分布列即可.

解答 解:(Ⅰ)從該產(chǎn)品中任取一件取到次品的概率為:$\frac{{C}_{2}^{1}}{{C}_{10}^{1}}$=$\frac{1}{5}$,…(2分)
故檢驗(yàn)員兩次都取到次品的概率為$(\frac{1}{5})^{2}=\frac{1}{25}$.…(5分)
(Ⅱ)顯然X的可能取值為0,1,2.…(6分)
P(X=0)=$\frac{{C}_{8}^{2}}{{C}_{10}^{2}}$=$\frac{28}{45}$,P(X=1)=$\frac{{C}_{8}^{1}{C}_{2}^{1}}{{C}_{10}^{2}}$=$\frac{16}{45}$,P(X=2)=$\frac{{C}_{2}^{2}}{{C}_{10}^{2}}$=$\frac{1}{45}$,…(10分)
所以X的分布列為

X012
P$\frac{28}{45}$$\frac{16}{45}$$\frac{1}{45}$
…(12分)

點(diǎn)評(píng) 本題考查離散性隨機(jī)變量的分布列,獨(dú)立重復(fù)試驗(yàn)概率的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知g(x)=sin2x的圖象,要得到f(x)=sin(2x-$\frac{π}{4}$),只需將g(x)的圖象( 。
A.向右平移$\frac{π}{8}$個(gè)單位B.向左平移$\frac{π}{8}$個(gè)單位
C.向右平移$\frac{π}{4}$個(gè)單位D.向左平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)全集U={x∈R|x>0},函數(shù)f(x)=$\sqrt{1-lnx}$的定義域?yàn)锳,則∁UA為( 。
A.(e,+∞)B.[e,+∞)C.(0,e)D.(0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)隨機(jī)變量X的概率分布表如下:
X1234
P$\frac{1}{4}$a$\frac{3}{8}$b
若E(X)=2.5,則a-b的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若隨機(jī)變量X的分布列為:
X01
p0.30.7
已知隨機(jī)變量Y=aX+b(a,b∈R,a>0),且E(Y)=10,D(Y)=21,則a與b的值為(  )
A.a=10,b=3B.a=3,b=10C.a=100,b=-60D.a=60,b=-100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.盒中裝有7個(gè)零件,其中5個(gè)是沒(méi)有使用過(guò)的,2個(gè)是使用過(guò)的.
(Ⅰ)從盒中每次隨機(jī)抽取1個(gè)零件,有放回的抽取3次,求3次抽取中恰有2次抽到使用過(guò)零件的概率;
(Ⅱ)從盒中任意抽取3個(gè)零件,使用后放回盒子中,設(shè)X為盒子中使用過(guò)零件的個(gè)數(shù),求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在數(shù)列{an}中,a1=1,且an+1=$\frac{{2{a_n}}}{{{a_n}+2}}$(n∈N*).
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)猜想數(shù)列{an}的通項(xiàng)公式的表達(dá)式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某校為了了解學(xué)生的成績(jī)是否與玩網(wǎng)游有關(guān)系,隨機(jī)抽查了110名學(xué)生,得到如下2×2列聯(lián)表:
  優(yōu)秀非優(yōu)秀 
 喜歡 10 50
 不喜歡 20 30
參考公式臨界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
(1)根據(jù)列聯(lián)表的數(shù)據(jù),問(wèn):有多大把握認(rèn)為“成績(jī)優(yōu)秀與玩網(wǎng)友有關(guān)?”
(2)現(xiàn)采用分層抽樣方法,從不喜歡的樣本中抽取5人,再?gòu)?人中隨機(jī)抽取2人,求至少有一人成績(jī)優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.為得到函數(shù)y=sin(x+$\frac{π}{3}$)的圖象,可將函數(shù)y=sinx的圖象左移m個(gè)單位長(zhǎng)度,則最小正數(shù)m是$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案