設(shè)0<a,b,c<1,求證:(1-a)b,(1-b)c,(1-c)a,不可能同時(shí)大于
【答案】分析:對(duì)于不可能結(jié)論的命題,常用反證法,即先假設(shè)三者都大于,相乘后得到的結(jié)論與另一個(gè)結(jié)論矛盾,從而原結(jié)論成立.
解答:證:假設(shè)原命題不成立;
即(1-a)b>,(1-b)c>,(1-c)a>
則三式相乘:(1-a)b•(1-b)c•(1-c)a>
又∵0<a,b,c<1∴2=
同理:(1-b)b≤,(1-c)c≤
以上三式相乘:(1-a)a•(1-b)b•(1-c)c≤與①矛盾.
∴(1-a)b,(1-b)c,(1-c)a,不可能同時(shí)大于
點(diǎn)評(píng):有些不等式無(wú)法利用用題設(shè)的已知條件直接證明,我們可以間接的方法--反證法去證明,即通過(guò)否定原結(jié)論---導(dǎo)出矛盾---從而達(dá)到肯定原結(jié)論的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)0<a,b,c<1,求證:(1-a)b,(1-b)c,(1-c)a,不可能同時(shí)大于
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年陜西省西安89中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)0<a,b,c<1,求證:(1-a)b,(1-b)c,(1-c)a,不可能同時(shí)大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年陜西省西安89中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)0<a,b,c<1,求證:(1-a)b,(1-b)c,(1-c)a,不可能同時(shí)大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年廣東省高考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)0<a,b,c<1,求證:(1-a)b,(1-b)c,(1-c)a,不可能同時(shí)大于

查看答案和解析>>

同步練習(xí)冊(cè)答案