【題目】已知圓,點(diǎn)是直線上的一動(dòng)點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為

(1)當(dāng)切線的長度為時(shí),求點(diǎn)的坐標(biāo);

(2)若的外接圓為圓,試問:當(dāng)在直線上運(yùn)動(dòng)時(shí),圓是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,說明理由.

(3)求線段長度的最小值.

【答案】(1)(2)圓過定點(diǎn)(3)

【解析】

試題分析:1)根據(jù)圓M的標(biāo)準(zhǔn)方程即可求出半徑r=2和圓心M坐標(biāo)(0,4),并可設(shè)P2b,b),從而由條件便可求出|MP|==4,這樣便可求出b的值,即得出點(diǎn)P的坐標(biāo);(2)容易求出圓N的圓心坐標(biāo)(b,),及半徑,從而可得出圓N的標(biāo)準(zhǔn)方程,化簡(jiǎn)后可得到(2x+y-4)b-(x2+y2-4y)=0,從而可建立關(guān)于x,y的方程,解出x,y,便可得出圓N所過的定點(diǎn)坐標(biāo);(3)可寫出圓N和圓M的一般方程,聯(lián)立這兩個(gè)一般方程即可求出相交弦AB的直線方程,進(jìn)而求出圓心M到直線AB的距離,從而求出弦長,顯然可看出時(shí),AB取最小值,并求出該最小值

試題解析:(1)由題意知,圓的半徑,設(shè),

是圓的一條切線,,

,解得,

………………………4

(2)設(shè),

經(jīng)過三點(diǎn)的圓為直徑,

其方程為 ……………………6

,

, ………………………8

解得,

圓過定點(diǎn), ………………………10

(3)因?yàn)閳A方程為,

,

,即

-得:圓方程與圓相交弦所在直線方程為:

, ………………………12

點(diǎn)到直線的距離,

,…………14

當(dāng)時(shí),有最小值 ………………………16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

(1)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù),當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連江一中第49屆田徑運(yùn)動(dòng)會(huì)提出了“我運(yùn)動(dòng)、我陽光、我健康、我快樂”的口號(hào),某同學(xué)要設(shè)計(jì)一張如圖所示的豎向張貼的長方形海報(bào)進(jìn)行宣傳,要求版心面積為162 版心是指圖中的長方形陰影部分,為長度單位分米),上、下兩邊各空2 ,左、右兩邊各空1 .

)若設(shè)版心的高為 ,求海報(bào)四周空白面積關(guān)于的函數(shù)的解析式;

)要使海報(bào)四周空白面積最小,版心的高和寬該如何設(shè)計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體的頂點(diǎn)、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯(cuò)誤的是( )

A. 是正三棱錐

B. 直線與平面相交

C. 直線與平面所成的角的正弦值為

D. 異面直線所成角是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,為等邊三角形,的中點(diǎn).

(1)求;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合I={1,2,3,4,5},選擇I的兩個(gè)非空子集A和B,要使B中最小的數(shù)大于A中最大的數(shù),則不同的選擇方法共有

A.50種 B.49種 C.48種 D.47種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為3的正方形,平面,且,

1試在線段上確定一點(diǎn)的位置,使得平面

2求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)討論是函數(shù)的極大值還是極小值;

(2)過點(diǎn)作曲線的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值是12.

(1)求的解析式;

(2)是否存在自然數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案