函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(4-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f'(x)<0,設(shè)a=f(log
1
2
4),b=f(log
1
3
27),c=f(log232)
,則( 。
分析:根據(jù)已知不等式,可得f(x)是(-∞,1)上的增函數(shù).而通過(guò)對(duì)數(shù)的化簡(jiǎn)結(jié)合f(x)=f(4-x),得a=f(-2),b=f(-3),c=f(-1),由此結(jié)合函數(shù)的單調(diào)性,不難得到正確的選項(xiàng).
解答:解:∵當(dāng)x∈(-∞,1)時(shí),(x-1)f'(x)<0,
∴f'(x)>0對(duì)任意x∈(-∞,1)恒成立,得函數(shù)f(x)是(-∞,1)上的增函數(shù)
又∵log
1
2
4
=-2,log
1
3
27
=-3,且-3<-2<1
a=f(log
1
2
4)>b=f(log
1
3
27)

∵log232=5,f(5)=f(4-5)=f(-1),-1>-2
∴c=f(log232)>f(-2)=f(log
1
2
4)=a

綜上所述,得c>a>b
故答案為:C
點(diǎn)評(píng):本題給出抽象函數(shù),在已知單調(diào)性的情況下比較幾個(gè)函數(shù)值的大小,著重考查了對(duì)數(shù)的運(yùn)算、函數(shù)圖象的對(duì)稱性和單調(diào)性等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
x2+1
,令g(x)=f(
1
x
)

(1)求函數(shù)f(x)的值域;
(2)任取定義域內(nèi)的5個(gè)自變量,根據(jù)要求計(jì)算并填表;觀察表中數(shù)據(jù)間的關(guān)系,猜想一個(gè)等式并給予證明;
x
f(x)-
1
2
g(x)-
1
2
(3)如圖,已知f(x)在區(qū)間[0,+∞)的圖象,請(qǐng)據(jù)此在該坐標(biāo)系中補(bǔ)全函數(shù)f(x)在定義域內(nèi)的圖象,并在同一坐標(biāo)系中作出函數(shù)g(x)的圖象.請(qǐng)說(shuō)明你的作圖依據(jù).
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(2x-1)
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)在定義域上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)f(x)在x=1處取得極值,對(duì)?x∈(0,+∞),f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)x>y>e-1時(shí),求證:ex-y
ln(x+1)ln(y+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在定義域(0.+∞)上是單調(diào)函數(shù),若對(duì)于任意x∈(0,+∞),都有f(f(x)-
1
x
)=2,則f(
1
5
)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln
1-x1+x

(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并加以證明;
(3)判斷函數(shù)f(x)在定義域上的單調(diào)性并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案