【題目】經(jīng)統(tǒng)計(jì),某校學(xué)生上學(xué)路程所需要時(shí)間全部介于之間(單位:分鐘).現(xiàn)從在校學(xué)生中隨機(jī)抽取人,按上學(xué)所學(xué)時(shí)間分組如下:第,第,第,第,第,得打如圖所示的頻率分布直方圖.

Ⅰ)根據(jù)圖中數(shù)據(jù)求的值.

Ⅱ)若從第,,組中用分成抽樣的方法抽取人參與交通安全問卷調(diào)查,應(yīng)從這三組中各抽取幾人?

Ⅲ)在(Ⅱ)的條件下,若從這人中隨機(jī)抽取人參加交通安全宣傳活動(dòng),求第組至少有人被抽中的概率.

【答案】(1)(2)各抽,人.(3)

【解析】分析:(1)根據(jù)所有小長方形面積的和為1,求的值,(2)根據(jù)分層抽樣按比例抽取人數(shù),(3)先根據(jù)枚舉法求總事件數(shù),再求第組至少有人被抽中的事件數(shù),最后根據(jù)古典概型概率公式求結(jié)果.

詳解:

Ⅱ)第組人數(shù)為人,

組人數(shù)為人,

組人數(shù)為人,

∴比例為,

∴第組,組,組各抽,人.

Ⅲ)記組人為,,

組人為,

組人為,

共有種,

符合有:

種,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,橢圓的上焦點(diǎn)為,橢圓的離心率為,且過點(diǎn).

(1)求橢圓的方程.

(2)設(shè)過橢圓的上頂點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】P2P平臺(tái)需要了解該平臺(tái)投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對區(qū)間[20,50]歲的人群隨機(jī)抽取20人進(jìn)行了一次理財(cái)習(xí)慣調(diào)查,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

人數(shù)(單位:人)

第一組

[20,25)

2

第二組

[25,30)

a

第三組

[30,35)

5

第四組

[35,40)

4

第五組

[40,45)

3

第六組

[45,50]

2

 

()a的值并畫出頻率分布直方圖;

()在統(tǒng)計(jì)表的第五與第六組的5人中,隨機(jī)選取2人,求這2人的年齡都小于45歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:若關(guān)于的方程無實(shí)數(shù)根,則;命題:若關(guān)于的方程有兩個(gè)不相等的正實(shí)數(shù)根,則.

(1)寫出命題的否命題,并判斷命題的真假;

(2)判斷命題“”的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司經(jīng)營一種二手機(jī)械,對該型號機(jī)械的使用年數(shù)與再銷售價(jià)格(單位:百萬元/臺(tái))進(jìn)行統(tǒng)計(jì)整理,得到如下關(guān)系:

使用年數(shù)

2

4

6

8

10

再銷售價(jià)格

16

13

9.5

7

5

(1)求關(guān)于的回歸直線方程;

(2)該機(jī)械每臺(tái)的收購價(jià)格為(百萬元),根據(jù)(1)中所求的回歸方程,預(yù)測為何值時(shí),此公司銷售一臺(tái)該型號二手機(jī)械所獲得的利潤最大?

附:參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海輪以每小時(shí)30海里的速度航行,在點(diǎn)測得海面上油井在南偏東,海輪向北航行40分鐘后到達(dá)點(diǎn),測得油井在南偏東,海輪改為北偏東的航向再行駛80分鐘到達(dá)點(diǎn),則兩點(diǎn)的距離為(單位:海里)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于在區(qū)間上有意義的函數(shù),滿足對任意的,,有恒成立,厄稱上是“友好”的,否則就稱上是“不友好”的,現(xiàn)有函數(shù).

(1)若函數(shù)在區(qū)間)上是“友好”的,求實(shí)數(shù)的取值范圍;

(2)若關(guān)于的方程的解集中有且只有一個(gè)元素,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�