在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,點D在棱AB上.
(1)若D是AB中點,求證:AC1∥平面B1CD;
(2)當時,求二面角的余弦值.
(1)詳見解析;(2)
解析試題分析:(1)要證明AC1∥平面B1CD,根據(jù)線面的判定定理,只要轉換證明DE//AC1即可;
(2)可以以C為原點建立空間直角坐標系,求出平面BCD的法向量與平面B1CD的法向量,然后利用向量夾角公式即可.
試題解析:解:(1)證明:連結BC1,交B1C于E,連接DE.
因為直三棱柱ABC-A1B1C1,D是AB中點,
所以側面BB1C1C為矩形,DE為△ABC1的中位線,所以DE//AC1.
因為DE平面B1CD,AC1平面B1CD,所以AC1∥平面B1CD.6分
(2)由(1)知AC⊥BC,如圖,以C為原點建立空間直角坐標系C-xyz.
則B(3,0,0),A(0,4,0),A1(0,4,4),B1(3,0,4).設D(a,b,0)(,),因為點D在線段AB上,且,即.
所以,,,,.
平面BCD的法向量為.設平面B1CD的法向量為,
由,,得,
所以,,.所以.
所以二面角的余弦值為.12分
考點:(1)空間位置關系的證明;(2)平面向量在立體幾何中的應用.
科目:高中數(shù)學 來源: 題型:解答題
如圖,點A、B是單位圓上的兩點,點C是圓與軸的正半軸的交點,將銳角的終邊按逆時針方向旋轉到.
(1)若點A的坐標為,求的值;
(2)用表示,并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,A,B是海面上位于東西方向相距海里的兩個觀測點,現(xiàn)位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發(fā)出求救信號,位于B點南偏西60°且與B點相距海里的C點的救援船立即即前往營救,其航行速度為30海里/小時,該救援船到達D點需要多長時間?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,某旅游景點有一座風景秀麗的山峰,山上有一條筆直的山路BC和一條索道AC,小王和小李打算不坐索道,而是花2個小時的時間進行徒步攀登.已知,,(千米),(千米).假設小王和小李徒步攀登的速度為每小時1200米,請問:兩位登山愛好者能否在2個小時內徒步登上山峰.
(即從B點出發(fā)到達C點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知向量,設函數(shù),若函數(shù)的圖象與的圖象關于坐標原點對稱.
(1)求函數(shù)在區(qū)間上的最大值,并求出此時的取值;
(2)在中,分別是角的對邊,若,,,求邊的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com