拋物線上一點(diǎn)到準(zhǔn)線的距離為3,則點(diǎn)的橫坐標(biāo)為(  ▲  )
A.1B.2C.3D.4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分14分)
已知橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到右準(zhǔn)線的距離等于短半軸的長.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 過點(diǎn)(,)的動(dòng)直線交橢圓、兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得無論如何轉(zhuǎn)動(dòng),以為直徑的圓恒過定點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知A,B是橢圓的左,右頂點(diǎn),,過橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)

(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓的右焦點(diǎn),過點(diǎn)且斜率為的直線交于兩點(diǎn),是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn).
(Ⅰ)證明:點(diǎn)在直線上;
(Ⅱ)設(shè),求外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

線段∣AB∣=4,∣PA∣+∣PB∣=6,M是AB的中點(diǎn),當(dāng)P點(diǎn)在同一平面內(nèi)運(yùn)動(dòng)時(shí),PM的長度的最小值是(  )
A.2B.C.D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線與曲線具有相同的焦距,則的取值范圍是
.    .    .   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線與拋物線有 一個(gè)公共的焦點(diǎn),且兩曲線的一個(gè)交點(diǎn)為,若,則雙曲線方程為               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓上,點(diǎn)Q在橢圓的右準(zhǔn)線上,若則橢圓的離心率為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

⊿ABC中,B(-2,0),C(2,0),中線AD的長為3,則點(diǎn)A的軌跡方程為(   )
A.x2+y2=9(y≠0)B.x2-y2=9(y≠0)
C.x2+y2="16" (y≠0)D.x2-y2=16(y≠0)

查看答案和解析>>

同步練習(xí)冊答案