設(shè)m,n是兩條不同直線,α,β是兩個(gè)不同的平面,下列命題正確的是(  )
A.m∥α,n∥β且α∥β,則m∥n
B.m⊥α,n⊥β且α⊥β,則m⊥n
C.m⊥α,n?β,m⊥n,則α⊥β
D.m?α,n?α,m∥β,n∥β,則α∥β
B
對(duì)于A,若m∥α,n∥β且α∥β,說(shuō)明m、n是分別在平行平面內(nèi)的直線,它們的位置關(guān)系應(yīng)該是平行或異面,故A錯(cuò);
對(duì)于B,由m⊥α,n⊥β且α⊥β,則m與n一定不平行,否則有α∥β,與已知α⊥β矛盾,通過(guò)平移使得m與n相交,
且設(shè)m與n確定的平面為γ,則γ與α和β的交線所成的角即為α與β所成的角,因?yàn)棣痢挺,所以m與n所成的角為90°,
故命題B正確.
對(duì)于C,根據(jù)面面垂直的性質(zhì),可知m⊥α,n?β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正確;
對(duì)于D,若“m?α,n?α,m∥β,n∥β”,則“α∥β”也可能α∩β=l,所以D不成立.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•山東)如圖,在四棱臺(tái)ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:AA1⊥BD;
(2)證明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)

如圖,在三棱柱中,底面,,E、F分別是棱的中點(diǎn).
(1)求證:AB⊥平面AA1 C1C;
(2)若線段上的點(diǎn)滿足平面//平面,試確定點(diǎn)的位置,并說(shuō)明理由;
(3)證明:⊥A1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)M、N是正方體ABCD-A1B1C1D1的兩棱A1A與A1B1的中點(diǎn),P是正方形ABCD的中心,

(1)求證:平面.
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列四個(gè)命題中,正確命題的個(gè)數(shù)是(    )個(gè)
① 若平面平面,直線平面,則
② 若平面平面,且平面平面,則;
③平面平面,且,點(diǎn),,若直線,則;
④直線為異面直線,且平面,平面,若,則.
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2013•浙江)在空間中,過(guò)點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個(gè)不同的平面,對(duì)空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則( 。
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知表示平面,m,n表示直線, ,給出下列四個(gè)結(jié)論:
;②;③;④,
則上述結(jié)論中正確的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,正方體的棱長(zhǎng)為a,M、N分別為和AC上的點(diǎn),,則MN與平面的位置關(guān)系是(    )
A.相交B.平行C.垂直D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個(gè)不同的平面。下列四個(gè)命題正確的是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案