(本小題滿分14分)
如圖,是圓的直徑,點(diǎn)在圓上,,交于點(diǎn),平面,,.
(1)證明:;
(2)求平面與平面所成的銳二面角的余弦值.
解:(法一)(1)平面平面, .……………1分
又,
平面
而平面
. ………………………………………3分
是圓的直徑,.
又,
.
平面,,
平面.
與都是等腰直角三角形.
.
,即(也可由勾股定理證得).………………………………5分
, 平面.
而平面,
. ………………………………………………………………………………6分
(2)延長交于,連,過作,連結(jié).
由(1)知平面,平面,
.
而,平面.
平面,
,
為平面與平面所成的
二面角的平面角. ……………………8分
在中,,,
.
由,得.
.
又,
,則. ………………………………11分
是等腰直角三角形,.
平面與平面所成的銳二面角的余弦值為. ………………………12分
(法二)(1)同法一,得. ………………………3分
如圖,以為坐標(biāo)原點(diǎn),垂直于、、所在的直線為軸建立空間直角坐標(biāo)系.
由已知條件得,
. ………4分
由,
得, . ……………6分
(2)由(1)知.
設(shè)平面的法向量為,
由 得,
令得,, …………………………9分
由已知平面,所以取面的法向量為,
設(shè)平面與平面所成的銳二面角為,
則, …………………………11分
平面與平面所成的銳二面角的余弦值為. ……………………12分
【說明】本題主要考察空間點(diǎn)、線、面位置關(guān)系,二面角等基礎(chǔ)知識,考查應(yīng)用向量知識解決數(shù)學(xué)問題的能力,考查空間想象能力、運(yùn)算能力和推理論證能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com