求下列函數(shù)的值域:
(1)y=
2x-1
x2+2x+2
; 
(2)y=
x-2
x2-3x+2
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:對于(1)可通過求極限的方法求值域;對于(2)可通過數(shù)形結(jié)合求值域.
解答: 解:(1)當x→0時,對y 取極限:
lim
x→0
2x-1
x2+2x+2
=-
1
2
,
當x→∞時,對y取極限:
lim
x→∞
2x-1
x2+2x+2
=
lim
x→∞
2
2x+2
=
lim
x→∞
1
x+1
→∞,
∴y的值域為:(-∞,-
1
2
)∪(-
1
2
,+∞).
(2)y=
x-2
(x-2)(x-1)
=
1
x-1
,
如圖示:

∴函數(shù)的值域為(-∞,0)∪(0,+∞).
點評:本題考察了函數(shù)的值域問題,解題過程中注意數(shù)形結(jié)合的應(yīng)用,本題是一道基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(2x+φ)(|φ|<
π
2
)的圖象向左平移
π
6
個單位后的一條對稱軸為x=
π
4
,則φ的取值為( 。
A、
π
12
B、
π
6
C、
π
4
D、
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l經(jīng)過點P(-2,1).
(Ⅰ)若直線l的方向向量為(-2,-3),求直線l的方程;
(Ⅱ)若直線l在兩坐標軸上的截距相等,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x+a)-x的最大值為0,其中a>0.
(1)求a的值;
(2)若對任意x∈[0,+∞),有f(x)≥kx2成立,求實數(shù)k的最大值;
(3)證明:
n
i=1
2
2i-1
<ln(2n+1)+2(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的首項為23,公差為整數(shù),且第6項為正數(shù),從第7項起為負數(shù).
(1)求此數(shù)列的公差d;
(2)當前n項和Sn是正數(shù)時,求n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx-x+1,g(x)=x2-2lnx-1,
(Ⅰ)h(x)=4f(x)-g(x),試求 h(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥1時,恒有af(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,試求a,b的值,
(1)并求出f(x)的單調(diào)區(qū)間
(2)在區(qū)間[-2,2]上的最大值與最小值
(3)若關(guān)于x的方程f(x)=α有3個不同實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值域:y=
3x-1
x+1
(x<1且x≠0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當x∈[0,2]時,f(x)=
x2-x
1
10
(x-2)
x∈[0,1)
x∈[1,2]
,若x∈[4,6]時,f(x)≥t2-2t-4恒成立,則實數(shù)t的取值范圍是
 

查看答案和解析>>

同步練習冊答案