【題目】年下半年以來,各地區(qū)陸續(xù)出臺了“垃圾分類”的相關(guān)管理條例,實行“垃圾分類”能最大限度地減少垃圾處置量,實現(xiàn)垃圾資源利用,改善垃圾資源環(huán)境,某部門在某小區(qū)年齡處于歲的人中隨機(jī)地抽取人,進(jìn)行了“垃圾分類”相關(guān)知識掌握和實施情況的調(diào)查,并把達(dá)到“垃圾分類”標(biāo)準(zhǔn)的人稱為“環(huán)保族”,得到如圖示各年齡段人數(shù)的頻率分布直方圖和表中的統(tǒng)計數(shù)據(jù).
組數(shù) | 分組 | “環(huán)保族”人數(shù) | 占本組的頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 |
(1)求、、的值;
(2)根據(jù)頻率分布直方圖,估計這人年齡的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值代替,結(jié)果按四舍五入保留整數(shù));
(3)從年齡段在的“環(huán)保族”中采取分層抽樣的方法抽取人進(jìn)行專訪,并在這人中選取人作為記錄員,求選取的名記錄員中至少有一人年齡在中的概率.
【答案】(1);(2);(3).
【解析】
(1)由頻率分布直方圖和頻數(shù)分布表能求出、、;
(2)根據(jù)頻率分布直方圖,能估計這人年齡的平均值;
(3)從年齡段在的“環(huán)保族”中采取分層抽樣的方法抽取人進(jìn)行專訪,中選人,分別記為、、、、,中選人,分別記為、、、,在這人中選取人作為記錄員,利用列舉法列舉出所有的基本事件,然后利用古典概型的概率公式可求得所求事件的概率.
(1)由題意得:;
(2)根據(jù)頻率分布直方圖,估計這人年齡的平均值為:;
(3)從年齡段在的“環(huán)保族”中采取分層抽樣的方法抽取人進(jìn)行專訪,
從中選:人,分別記為、、、、,
從中選:人,分別記為、、、,
在這人中選取人作為記錄員,所有的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,共種,
選取的名記錄員中至少有一人年齡在包含的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、,共種,
因此,選取的名記錄員中至少有一人年齡在中的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對年銷售量(單位:)的影響.該公司對近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)(萬元)和年銷售量(單位:)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
(萬元) | 2 | 4 | 5 | 3 | 6 |
(單位:) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根據(jù)表中數(shù)據(jù)建立年銷售量關(guān)于年宣傳費(fèi)的回歸方程;
(2)已知這種產(chǎn)品的年利潤與,的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:
①當(dāng)年宣傳費(fèi)為10萬元時,年銷售量及年利潤的預(yù)報值是多少?
②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.
附:問歸方程中的斜率和截距的最小二乘估計公式分別為,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,底面,點是棱的中點.
(Ⅰ)求證:平面;
(Ⅱ)若,,在棱上是否存在點,使二面角的大小為,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱柱ABCD—A1B1C1D1中,底面ABCD是菱形,且平面A1ADD1⊥平面ABCD,DA1=DD1,點E,F分別為線段A1D1,BC的中點.
(1)求證:EF∥平面CC1D1D;
(2)求證:AC⊥平面EBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在定義域內(nèi)單調(diào)遞增,求實數(shù)的值;
(2)若在定義域內(nèi)有唯一的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“雙一流A類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)為感謝同學(xué)們對這項調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈送一份禮品,并從這6人中再抽取2人,各贈送某款智能手機(jī)1部,求獲贈智能手機(jī)的2人月薪都不低于1.75萬元的概率;
(2)同一組數(shù)據(jù)用該區(qū)間的中點值作代表.
(i)求這100人月薪收入的樣本平均數(shù)和樣本方差;
(ii)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動費(fèi)用,有兩種收費(fèi)方案:
方案一:設(shè),月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收到600元,月薪落在區(qū)間右側(cè)的每人收取800元.
方案二:按每人一個月薪水的3%收;用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,分別是橢圓的左頂點和上頂點,為其右焦點,,且該橢圓的離心率為;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點為橢圓上的一動點,且不與橢圓頂點重合,點為直線與軸的交點,線段的中垂線與軸交于點,若直線斜率為,直線的斜率為,且(為坐標(biāo)原點),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com