如圖,底面邊長為a,高為h的正三棱柱ABC-A1B1C1,其中D是AB的中點,E是BC的三等分點.求幾何體BDEA1B1C1的體積.
a2h.
【解析】學(xué)生錯【解析】
解∵BD=,BE=,∠DBE=60°,
∴S△DBE=BD·BEsin∠DBE=a2,S△A1B1C1=·A1B1·B1C1sin60°=a2.
由棱臺體積公式得
VBDEA1B1C1=h(S△BDE+S△A1B1C1+)
=h=a2h.
審題引導(dǎo):(1)弄清組合體的結(jié)構(gòu),這里幾何體DBEA1B1C1不是棱臺,也可補上一個三棱錐使之成為一個三棱臺;(2)運用體積公式進行計算.
規(guī)范解答:
【解析】
如圖,取BC中點F,連結(jié)DF、C1D、C1E、C1F,得正三棱臺DBFA1B1C1及三棱錐C1DEF.
∵S△A1B1C1=a2,S△DBF=S△ABC=a2,(4分)
∴VDBFA1B1C1=h(S△DBF+S△A1B1C1+)
=h(a2+a2+)=a2h.(8分)
∴VC1DEF=a2=a2h,(10分)
∴VBDEA1B1C1=VDBFA1B1C1VC1DEF=a2h-a2h=a2h.(14分)
錯因分析:沒有弄清所給幾何體的結(jié)構(gòu),幾何體DBEA1B1C1不是棱臺.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第3課時練習(xí)卷(解析版) 題型:填空題
若x>0,則x+的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第6課時練習(xí)卷(解析版) 題型:解答題
如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點E、F分別為棱AC、AD的中點.
(1)求證:DC⊥平面ABC;
(2)求BF與平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第6課時練習(xí)卷(解析版) 題型:填空題
已知l∥α,且l的方向向量為(2,m,1),平面α的法向量為,則m=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第5課時練習(xí)卷(解析版) 題型:解答題
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點E在線段AD上,且CE∥AB.
(1)求證:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第5課時練習(xí)卷(解析版) 題型:解答題
如圖,在球面上有四個點P、A、B、C,如果PA、PB、PC兩兩互相垂直,且PA=PB=PC=a,求這個球的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第4課時練習(xí)卷(解析版) 題型:解答題
如圖,AB、CD均為圓O的直徑,CE⊥圓O所在的平面,BF∥CE.求證:
(1)平面BCEF⊥平面ACE;
(2)直線DF∥平面ACE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第4課時練習(xí)卷(解析版) 題型:填空題
已知α、β、γ是三個不同的平面,命題“α∥β,且α⊥γβ⊥γ”是真命題,如果把α、β、γ中的任意兩個換成直線,另一個保持不變,在所得的所有新命題中,真命題的個數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第1課時練習(xí)卷(解析版) 題型:解答題
如圖,在四面體ABCD中作截面PQR,若PQ、CB的延長線交于M,RQ、DB的延長線交于N,RP、DC的延長線交于K.
求證:M、N、K三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com