【題目】如圖,三棱錐ABCD中,AB⊥平面BCD,CD⊥BD .

1)求證:CD⊥平面ABD;

2)若ABBDCD1MAD中點,求三棱錐AMBC的體積.

【答案】1)詳見解析(2

【解析】試題分析:()證明:CD⊥平面ABD,只需證明AB⊥CD;()利用轉(zhuǎn)換底面,VA-MBC=VC-ABM=SABMCD,即可求出三棱錐A-MBC的體積

試題解析:(1∵AB⊥平面BCDCD平面BCD,

∴AB⊥CD.

∵CD⊥BD,AB∩BDB,

AB平面ABD,BD平面ABD

∴CD⊥平面ABD.

2)法一:由AB⊥平面BCD,得AB⊥BD,

∵ABBD1,∴SABD.

∵M(jìn)AD的中點,

∴SABMSABD

由(1)知,CD⊥平面ABD,

三棱錐CABM的高hCD1

因此三棱錐AMBC的體積

VAMBCVCABMSABM·h.

法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCDBD,如圖,過點MMN⊥BDBD于點N,則MN⊥平面BCD,且MNAB,又CD⊥BD,BDCD1,

∴SBCD.

三棱錐AMBC的體積

VAMBCVABCDVMBCD

AB·SBCDMN·SBCD

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

如圖,四邊形是正方形,均是以為直角頂點的等腰直角三角形,點的中點,點是邊上的任意一點.

1)求證:

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,EF分別為B1C1,A1D1的中點.求證:平面ABB1A1與平面CDFE相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[50,60

[6070

[70,80

[80,90

[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;

3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在正方體ABCD-A1B1C1D1,E,FP,QM,N分別是棱AB,AD,DD1BB1,A1B1,A1D1的中點.求證

(1)直線BC1∥平面EFPQ.

(2)直線AC1⊥平面PQMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,直線的參數(shù)方程為t為參數(shù)),PQ分別為直線x軸、y軸的交點,線段PQ的中點為M

)求直線的直角坐標(biāo)方程;

)以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求點M的極坐標(biāo)和直線OM的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.如圖在三棱錐V-ABC,VO⊥平面ABC,O∈CD,VA=VB,AD=BD則下列結(jié)論中不一定成立的是 (  )

A. AC=BC

B. VC⊥VD

C. AB⊥VC

D. SVCD·AB=SABC·VO

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知e為自然對數(shù)的底數(shù),設(shè)函數(shù),則( ).

A. 當(dāng)k=1時,f(x)在x=1處取到極小值 B. 當(dāng)k=1時,f(x)在x=1處取到極大值

C. 當(dāng)k=2時,f(x)在x=1處取到極小值 D. 當(dāng)k=2時,f(x)在x=1處取到極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線C1 t為參數(shù)),C2 (θ為參數(shù)),

(Ⅰ)當(dāng)α= 時,求C1與C2的交點坐標(biāo);

(Ⅱ)過坐標(biāo)原點O做C1的垂線,垂足為A,P為OA中點,當(dāng)α變化時,求P點的軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

同步練習(xí)冊答案