【題目】已知拋物線的焦點(diǎn)在拋物線上,點(diǎn)是拋物線上的動(dòng)點(diǎn).

(1)求拋物線的方程及其準(zhǔn)線方程;

(2)過(guò)點(diǎn)作拋物線的兩條切線,分別為兩個(gè)切點(diǎn),求面積的最小值.

【答案】(1)的方程為 其準(zhǔn)線方程為;(2)2

【解析】試題分析:(1)求得拋物線C1的焦點(diǎn),由題意可得p=2,即可得到所求拋物線的方程和準(zhǔn)線方程;(2)設(shè)P(2t,t2),A(x1,y1),B(x2,y2),求出y=x2+1的導(dǎo)數(shù),可得切線PA,PB的斜率和方程,又PA和PB都過(guò)P點(diǎn),可得直線AB的方程,代入拋物線y=x2+1,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,由點(diǎn)到直線的距離公式,可得P到直線AB的距離,再由三角形的面積公式,化簡(jiǎn)整理計(jì)算可得所求面積的最小值.

試題解析:

(1)的方程為 其準(zhǔn)線方程為

(2)設(shè),,

則切線的方程:,即,又

所以,同理切線的方程為,

都過(guò)點(diǎn),所以,

所以直線的方程為.

聯(lián)立,所以。

所以

點(diǎn)到直線的距離

所以的面積

所以當(dāng)時(shí), 取最小值為。即面積的最小值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,.

(1)證明:;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計(jì)劃在區(qū)開設(shè)分店,為了確定在該區(qū)設(shè)分店的個(gè)數(shù),該公司對(duì)該市開設(shè)分店的其他區(qū)的數(shù)據(jù)做了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個(gè)數(shù),表示這個(gè)分店的年收入之和.

(1)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與,之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司在區(qū)開設(shè)多少個(gè)分店時(shí),才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?

參考公式:回歸直線方程為,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為的菱形, .

(1)求證:平面平面;

(2)若,求銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓: 上的任一點(diǎn)到焦點(diǎn)的距離最大值為3,離心率為 ,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若為曲線上兩點(diǎn), 為坐標(biāo)原點(diǎn),直線 的斜率分別為,,求直線被圓截得弦長(zhǎng)的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)是原點(diǎn),以軸為對(duì)稱軸,且經(jīng)過(guò)點(diǎn).

(Ⅰ)求拋物線的方程;

(Ⅱ)設(shè)點(diǎn), 在拋物線上,直線, 分別與軸交于點(diǎn), , .求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2018四川南充高三第二次(3月)高考適應(yīng)性考試某校開展翻轉(zhuǎn)合作學(xué)習(xí)法教學(xué)試驗(yàn),經(jīng)過(guò)一年的實(shí)踐后,對(duì)翻轉(zhuǎn)班對(duì)照班的全部220名學(xué)生的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行測(cè)試,按照大于或等于120分為成績(jī)優(yōu)秀”,120分以下為成績(jī)一般統(tǒng)計(jì),得到如下的列聯(lián)表:

成績(jī)優(yōu)秀

成績(jī)一般

合計(jì)

對(duì)照班

20

90

110

翻轉(zhuǎn)班

40

70

110

合計(jì)

60

160

220

(I)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為成績(jī)優(yōu)秀與翻轉(zhuǎn)合作學(xué)習(xí)法有關(guān);

(II)為了交流學(xué)習(xí)方法,從這次測(cè)試數(shù)學(xué)成績(jī)優(yōu)秀的學(xué)生中,用分層抽樣方法抽出6名學(xué)生,再?gòu)倪@6名學(xué)生中抽3名出來(lái)交流學(xué)習(xí)方法,求至少抽到1對(duì)照班學(xué)生交流的概率.

附表:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動(dòng)購(gòu)水機(jī)處每購(gòu)買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:

售出水量(單位:箱)

7

6

6

5

6

收入(單位:元)

165

142

148

125

150

學(xué)校計(jì)劃將捐款以獎(jiǎng)學(xué)金的形式獎(jiǎng)勵(lì)給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎(jiǎng)學(xué)金500元;綜合考核21-50名,獲二等獎(jiǎng)學(xué)金300元;綜合考核50名以后的不獲得獎(jiǎng)學(xué)金.

(1)若成線性相關(guān),則某天售出9箱水時(shí),預(yù)計(jì)收入為多少元?

(2)甲乙兩名學(xué)生獲一等獎(jiǎng)學(xué)金的概率均為,獲二等獎(jiǎng)學(xué)金的概率均為,不獲得獎(jiǎng)學(xué)金的概率均為,已知甲乙兩名學(xué)生獲得哪個(gè)等級(jí)的獎(jiǎng)學(xué)金相互獨(dú)立,求甲乙兩名學(xué)生所獲得獎(jiǎng)學(xué)金之和的分布列及數(shù)學(xué)期望;

附:回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________

【答案】

【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時(shí),則平行AC直線即可故a=-2,當(dāng)a>0時(shí),則直線平行AB即可,故a=1

點(diǎn)睛:線性規(guī)劃為?碱}型,解決此題務(wù)必要理解最優(yōu)解個(gè)數(shù)為無(wú)數(shù)個(gè)時(shí)的條件是什么,然后根據(jù)幾何關(guān)系求解即可

型】填空
結(jié)束】
16

【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , 分別為對(duì)應(yīng)的大斜,中斜,小斜上的高;則 .若在, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案