【題目】已知數(shù)列{an},{bn},滿(mǎn)足a1=b1=3,an+1﹣an= =3,n∈N* , 若數(shù)列{cn}滿(mǎn)足cn= ,則c2017=(
A.92016
B.272016
C.92017
D.272017

【答案】D
【解析】解:∵數(shù)列{an},滿(mǎn)足a1=3,an+1﹣an=3,n∈N*
∴an=a1+(n﹣1)d=3+3(n﹣1)=3n.
∵數(shù)列{bn},滿(mǎn)足b1=3, =3,n∈N* ,
∴bn=b1qn1=3×3n1=3n
∵數(shù)列{cn}滿(mǎn)足cn=
∴c2017= =b3×2017=272017
故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識(shí),掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AC為⊙O的直徑,D為 的中點(diǎn),E為BC的中點(diǎn).

(1)求證:DE∥AB;
(2)求證:ACBC=2ADCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù));以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)若把曲線各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)變?yōu)樵瓉?lái)的,得到曲線,求曲線的方程;

(Ⅲ)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到曲線上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年2月22日,在韓國(guó)平昌冬奧會(huì)短道速滑男子米比賽中,中國(guó)選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國(guó)代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造了中國(guó)男子冰上競(jìng)速項(xiàng)目在冬奧會(huì)金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運(yùn)動(dòng)員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過(guò)個(gè)直道與彎道的交接口.已知某男子速滑運(yùn)動(dòng)員順利通過(guò)每個(gè)交接口的概率均為,摔倒的概率均為.假定運(yùn)動(dòng)員只有在摔倒或到達(dá)終點(diǎn)時(shí)才停止滑行,現(xiàn)在用表示該運(yùn)動(dòng)員滑行最后一圈時(shí)在這一圈內(nèi)已經(jīng)順利通過(guò)的交接口數(shù).

(1)求該運(yùn)動(dòng)員停止滑行時(shí)恰好已順利通過(guò)個(gè)交接口的概率;

(2)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+3)在(0,+∞)上單調(diào)遞減,q:函數(shù)yx2+(2a-3)x+1的圖像與x軸交于不同的兩點(diǎn).如果pq真,pq假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A是拋物線M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點(diǎn),且點(diǎn)A到拋物線M焦點(diǎn)F的距離為a,若拋物線M上一動(dòng)點(diǎn)到其準(zhǔn)線與到點(diǎn)C的距離之和的最小值為2a,O為坐標(biāo)原點(diǎn),則直線OA被圓C所截得的弦長(zhǎng)為( )
A.2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)對(duì)任意的mnR都有f(mn)=f(m)+f(n)-1,并且x>0時(shí),恒有f(x)>1.

(1)求證:f(x)R上是增函數(shù);

(2)f(3)=4,解不等式f(a2a-5)<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O:x2+y2=4,點(diǎn)F( ,0),以線段MF為直徑的圓內(nèi)切于圓O,記點(diǎn)M的軌跡為C
(1)求曲線C的方程;
(2)若過(guò)F的直線l與曲線C交于A,B兩點(diǎn),問(wèn):在x軸上是否存在點(diǎn)N,使得 為定值?若存在,求出點(diǎn)N坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則函數(shù)f(x)的解析式為

查看答案和解析>>

同步練習(xí)冊(cè)答案