4.已知三角形的頂點(diǎn)A(-5,0),B(3,-3),C(0,2),試求:
(1)BC邊所在直線的方程;
(2)AC邊上的高所在直線的方程.

分析 (1)根據(jù)三角形的頂點(diǎn)坐標(biāo)求出斜率kBC,由斜截式求出直線BC的方程;
(2)求出AC邊所在直線的斜率與AC邊上的高的斜率,由點(diǎn)斜式寫出高所在直線的方程即可.

解答 解:(1)∵三角形的頂點(diǎn)A(-5,0),B(3,-3),C(0,2),
∴BC邊所在直線的斜率為kBC=$\frac{2-(-3)}{0-3}$=-$\frac{5}{3}$,
又BC邊所在直線在y軸上的截距為2,
∴BC邊所在直線方程為y=-$\frac{5}{3}$x+2,
即5x+3y-6=0;
(2)∵AC邊所在直線的斜率為kAC=$\frac{2-0}{0-(-5)}$=$\frac{2}{5}$,
∴AC邊上的高的斜率為k=-$\frac{5}{2}$,
∴AC邊上的高的直線的方程為y+3=-$\frac{5}{2}$(x-3),
即5x+2y-9=0.

點(diǎn)評(píng) 本題考查了求直線方程的應(yīng)用問題,也考查了直線的垂直與斜率之間的關(guān)系,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在直角三角形ABC中,C=90°,B=30°,AB=4,M是AB的中點(diǎn),將三角形ACM沿CM翻折成直二面角,則三棱錐A-CBM的外接球的表面積為( 。
A.$\frac{52π}{3}$B.$\frac{18π}{5}$C.$\frac{14π}{3}$D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是(  )
A.f(x)=-$\sqrt{x+1}$B.f(x)=${(\frac{1}{2})}^{x}$C.f(x)=lnx+2D.f(x)=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+2n(n∈N+),數(shù)列{bn}的前n項(xiàng)和Tn=2n-1(n∈N+).
(1)求數(shù)列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n項(xiàng)和;
(2)求數(shù)列{an•bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知x=27,y=64.化簡并計(jì)算$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{(-\frac{1}{4}{x}^{-1}{y}^{\frac{1}{2}})(-\frac{5}{6}{x}^{\frac{1}{3}}{y}^{-\frac{1}{6}})}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知圓心在第一象限的圓過點(diǎn)P(-4,3),圓心在直線2x-y+1=0上,且半徑為5,則這個(gè)圓的方程為(x-1)2+(y-3)2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=$\left\{\begin{array}{l}{\frac{x-3a-1}{x-2},x<1}\\{-{x}^{2}-2(a-1)x-\frac{1}{6},x≥1}\end{array}\right.$是定義在(-∞,+∞)上是減函數(shù),則a的取值范圍是( 。
A.[$\frac{1}{6}$,$\frac{1}{3}$]B.[0,$\frac{1}{3}$]C.[0,$\frac{1}{3}$)D.[$\frac{1}{6}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓ρ=2,直線ρcosθ=4,過極點(diǎn)作射線交圓于點(diǎn)A,交直線于點(diǎn)B,當(dāng)射線以極點(diǎn)為中心轉(zhuǎn)動(dòng)時(shí),求線段AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)n∈N*,圓Cn:(x-$\frac{1}{n}$)2+(y-1)2=$\frac{{4}^{n+1}-1}{{4}^{n+1}+2}$的面積為Sn,則$\underset{lim}{n→∞}$Sn=π.

查看答案和解析>>

同步練習(xí)冊(cè)答案