.過點P(6,8)作圓的兩條切線,切點為A、B,則的外接圓的方程為

       A.                    B.

       C.                     D.

 

【答案】

A

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C1:x2+y2+D1x+8y-8=0,圓C2:x2+y2+D2x-4y-2=0.
(1)若D1=2,D2=-4,求圓C1與圓C2的公共弦所在的直線l1的方程;
(2)在(1)的條件下,已知P(-3,m)是直線l1上一點,過點P分別作直線與圓C1、圓C2相切,切點為A、B,求證:|PA|=|PB|;
(3)將圓C1、圓C2的方程相減得一直線l2:(D1-D2)x+12y-6=0.Q是直線l2上,且在圓C1、圓C2外部的任意一點.過點Q分別作直線QM、QN與圓C1、圓C2相切,切點為M、N,試探究|QM|與|QN|的關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,∠C=90°,AC=8,BC=6.P是AB邊上的一個動點(異于A、B兩點),過點P分別作AC、BC邊的垂線,垂足為M、N.設AP=x.
(1)在△ABC中,AB=
 

(2)當x=
 
時,矩形PMCN的周長是14;
(3)是否存在x的值,使得△PAM的面積、△PBN的面積與矩形PMCN的面積同時相等?請說出你的判斷,并加以說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點P(6,8)作圓x2+y2=1的兩條切線,切點為A、B,則△ABP的外接圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省高三普通高考考生知識能力水平摸底考試數(shù)學理卷 題型:選擇題

.過點P(6,8)作圓的兩條切線,切點為A、B,則的外接圓的方程為

       A.                    B.

       C.                     D.

 

查看答案和解析>>

同步練習冊答案