分析 (1)求得x<1時f(x)的導(dǎo)數(shù),可得切線的斜率,由f(-1)=2,解方程可得b,c的值;
(2)假設(shè)曲線y=f(x)上存在兩點P,Q,使得△POQ是以O(shè)為直角頂點的直角三角形,則P,Q只能在y軸的兩側(cè),不妨設(shè)P(t,f(t))(t>0),則q(-t,t3+t2),且t≠1.對t討論,t>1,0<t<1,通過構(gòu)造函數(shù),求得單調(diào)性,考慮方程-t2+f(t)•(t3+t2)=0有解,即可判斷存在性.
解答 解:(1)當(dāng)x<1時,f(x)=-x3+x2+bx+c,則f′(x)=-3x2+2x+b,
由題意知$\left\{\begin{array}{l}{f′(-1)=b-5=-5}\\{f(-1)=2}\end{array}\right.$,解得b=c=0.
(2)假設(shè)曲線y=f(x)上存在兩點P,Q,
使得△POQ是以O(shè)為直角頂點的直角三角形,
則P,Q只能在y軸的兩側(cè),不妨設(shè)P(t,f(t))(t>0),
則q(-t,t3+t2),且t≠1.
因為△POQ是以O(shè)為直角頂點的直角三角形,所以$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,
即-t2+f(t)•(t3+t2)=0,(1)
是否存在點P,Q等價于方程(1)是否有解,
若0<t<1,則f(t)=-t3+t2,代入方程(1)得:t4-t2+1=0,此方程無實數(shù)解.
若t>1,則f(t)=alnt,代入方程(1)得到$\frac{1}{a}$=(t+1)lnt,
設(shè)h(x)=(x+1)lnx(x≥1),則h′(x)=lnx+$\frac{1}{x}$>0在[1,+∞)上恒成立,
所以h(x)在[1,+∞)上單調(diào)遞增,從而h(x)≥h(1)=0,
所以當(dāng)a>0時,方程$\frac{1}{a}$=(t+1)lnt有解,即方程(1)有解,
所以對任意給定的正實數(shù)a,曲線y=f(x)上存在兩點P,Q,
使得△POQ是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上.
點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率和單調(diào)區(qū)間,考查存在性問題的解法,以及構(gòu)造法的運用,分類討論的思想方法,化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m⊆A | B. | m∉A | C. | {m}∈A | D. | m∈A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com