【題目】某人利用一根原木制作一件手工作品,該作品由一個(gè)球體和一個(gè)正四棱柱組成,假定原 木為圓柱體(如圖1),底面半徑為,高為,制作要求如下:首先需將原木切割為兩部分(分別稱為第I圓柱和第II圓柱),要求切面與原木的上下底面平行(不考慮損耗) 然后將第I圓柱切割為一個(gè)球體,要求體積最大,將第II圓柱切割為一個(gè)正四棱柱,要求正四棱柱的上下底面分別為第II圓柱上下底面圓的內(nèi)接正方形.

1)當(dāng)時(shí),若第I圓柱和第II圓柱的體積相等,求該手王作品的體積;

2)對(duì)于給定的,求手工作品體積的最大值.

【答案】12

【解析】

1)由已知可得第I圓柱和第II圓柱高相等為4,等于圓柱底面直徑,第I圓柱的球體最大直徑為4,再由條件可求出正四棱柱的底面邊長(zhǎng),從而求出體積,即可求解;

(2)設(shè)第I圓柱的高為,則第II圓柱的高為,求出正四棱柱體積為,而球半徑為較小值,對(duì)分類討論,當(dāng)是,球的半徑為,體積定值,只需求最大值即可;當(dāng),球最大半徑為,求出球的體積與正四棱柱體積和,通過求導(dǎo),求出最大值,對(duì)比兩個(gè)范圍的最大值,即可求解.

1)因?yàn)榈?/span>I圓柱和第II圓柱的體積一樣大,

所以它們的高一樣,可設(shè)為

I圓柱的球體直徑不超過

因此第I圓柱內(nèi)的最大球體半徑即為

球體體積

因?yàn)檎睦庵牡酌嬲叫蝺?nèi)接于半徑為的圓

所以正方形的對(duì)角線長(zhǎng)為,邊長(zhǎng)為

正四棱柱體積,

手工作業(yè)的體積為.

2)設(shè)第I圓柱的高為,則第II圓柱的高為,

①當(dāng)時(shí),第I圓柱內(nèi)的球體直徑應(yīng)不超過

故球體的最大半徑應(yīng)為

由(1)可知,此時(shí)第II圓柱內(nèi)的正四棱柱底面積為,

故當(dāng)時(shí),最大為

手工作品的體積最大值為.

②當(dāng)時(shí),第I圓柱內(nèi)的球體直徑應(yīng)不超過,

故球體的最大直徑應(yīng)為,

球體體積,

正四棱柱體積

所以手工作品的體積為.

.

遞減

極小

遞增

,

因?yàn)?/span>

所以

所以當(dāng)時(shí),

手工作品的體積最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為).

(I)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(Ⅱ)已知是直線上的一點(diǎn),是曲線上的一點(diǎn), ,,若的最大值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)列,若滿足,則稱數(shù)列“0-1數(shù)列.定義變換“0-1數(shù)列中原有的每個(gè)1都變成0,1,原有的每個(gè)0都變成1,0.例如:1,0,1,則設(shè)“0-1數(shù)列,令

3

) 若數(shù)列求數(shù)列;

) 若數(shù)列共有10項(xiàng),則數(shù)列中連續(xù)兩項(xiàng)相等的數(shù)對(duì)至少有多少對(duì)?請(qǐng)說明理由;

)若0,1,記數(shù)列中連續(xù)兩項(xiàng)都是0的數(shù)對(duì)個(gè)數(shù)為,.求關(guān)于的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市房管局為了了解該市市民月至月期間買二手房情況,首先隨機(jī)抽樣其中名購房者,并對(duì)其購房面積(單位:平方米,)進(jìn)行了一次調(diào)查統(tǒng)計(jì),制成了如圖所示的頻率分布直方圖,接著調(diào)查了該市月至月期間當(dāng)月在售二手房均價(jià)(單位:萬元/平方米),制成了如圖所示的散點(diǎn)圖(圖中月份代碼分別對(duì)應(yīng)月至月).

1)試估計(jì)該市市民的購房面積的中位數(shù);

2)現(xiàn)采用分層抽樣的方法從購房面積位于位市民中隨機(jī)抽取人,再從這人中隨機(jī)抽取人,求這人的購房面積恰好有一人在的概率;

3)根據(jù)散點(diǎn)圖選擇兩個(gè)模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個(gè)回歸方程,分別為,并得到一些統(tǒng)計(jì)量的值如下表所示:

0.000591

0.000164

0.006050

請(qǐng)利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好,并用擬合效果更好的模型預(yù)測(cè)出月份的二手房購房均價(jià)(精確到

(參考數(shù)據(jù)),,,,,

(參考公式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016114日,國防科工局宣布,嫦娥四號(hào)任務(wù)已經(jīng)通過了探月工程重大專項(xiàng)領(lǐng)導(dǎo)小組審議通過,正式開始實(shí)施.如圖所示,假設(shè)“嫦娥四號(hào)”衛(wèi)星將沿地月轉(zhuǎn)移軌道飛向月球后,在月球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行.若用分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸長(zhǎng),給出下列式子:①;②;③;④.其中正確式子的序號(hào)是( )

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),判斷在定義域上的單調(diào)性;

2)若對(duì)定義域上的任意的,有恒成立,求實(shí)數(shù)a的取值范圍;

3)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的方程;

(2)過原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線軸分別交于兩點(diǎn).

①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓內(nèi)一點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且與圓內(nèi)切.

(1)求圓心的軌跡的方程.

(2)過點(diǎn)且不與坐標(biāo)軸垂直的直線交曲線兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知平行于軸的動(dòng)直線交拋物線 于點(diǎn),點(diǎn)的焦點(diǎn).圓心不在軸上的圓與直線, , 軸都相切,設(shè)的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與曲線相切于點(diǎn),過且垂直于的直線為,直線, 分別與軸相交于點(diǎn), .當(dāng)線段的長(zhǎng)度最小時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案