設(shè)F1,F(xiàn)2分別是橢圓E:(0<b<1)的左,右焦點(diǎn),過(guò)F1的直線l與E相交于A,B兩點(diǎn),且|AF2|
,|AB|,|BF2|成等差數(shù)列.
(Ⅰ)求|AB|;
(Ⅱ)若直線l的斜率為1,求b的值.
解:(Ⅰ)由橢圓定義知|AF2|+|AB|+|BF2|=4,
又2|AB|=|AF2|+|BF2|,得|AB|=
(Ⅱ)l的方程為y=x+c,其中,
設(shè)A(x1,y1),B(x2,y2),
則A,B兩點(diǎn)坐標(biāo)滿足方程組
化簡(jiǎn)得(1+b2)x2+2cx+1-2b2=0,
,
因?yàn)橹本AB的斜率為1,所以,
,

解得。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),過(guò)F1斜率為1的直線?與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求E的離心率;
(2)設(shè)點(diǎn)P(0,-1)滿足|PA|=|PB|,求E的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:x2+
y2b2
=1(0<b<1)的左、右焦點(diǎn),過(guò)F1的直線l與E相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(Ⅰ)求|AB|;
(Ⅱ)若直線l的斜率為1,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:x2+
y2
b2
=1(0<b<1)
的左、右焦點(diǎn),過(guò)F1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長(zhǎng)為
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別是橢圓E:x2+
y2
b2
=1(0<b<1)
的左、右焦點(diǎn),過(guò)F1的直線?與E相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長(zhǎng)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),過(guò)F1且斜率為k的直線l與E相交于A、B兩點(diǎn),且|AF2|、|AB|、|BF2|成等差數(shù)列.
(1)若a=1,求|AB|的值;
(2)若k=1,設(shè)點(diǎn)P(0,-1)滿足|PA|=|PB|,求橢圓E的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案