設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=x2-x,則當(dāng)x≥0時(shí),f(x)的解析式為________.

f(x)=-x2-x(x≥0)
分析:設(shè)x≥0,則有-x≤0,由條件可得 f(-x),再由f(x)是定義在R上的奇函數(shù),f(-x)=-f(x),求出f(x)的解析式.
解答:設(shè)x≥0,則有-x≤0,由條件可得 f(-x)=x2+x.
再由f(x)是定義在R上的奇函數(shù),可得-f(x)=x2+x,
∴f(x)=-x2-x(x≥0),
故答案為 )=-x2-x(x≥0).
點(diǎn)評(píng):本題主要考查利用函數(shù)的奇偶性求函數(shù)的解析式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、設(shè)f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x-1,則f(-1)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(1)=0,當(dāng)x>0時(shí),有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
1
2
 )=2
,則f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x).當(dāng)x∈[0,2]時(shí),f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時(shí)的解析式為( 。
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步練習(xí)冊(cè)答案