【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE= BC,PB⊥AE.

(1)求證:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.

【答案】
(1)證明:∵PA⊥平面ABCD,AE平面ABCD,

∴PA⊥AE,

又∵PB⊥AE,PB∩PA=P,

∴AE⊥平面PAB,又∵AB平面PAB,

∴AE⊥AB.

又∵PA⊥AB,PA∩AE=A,

∴AB⊥平面PAE,

又∵PE平面PAE,

∴AB⊥PE.


(2)解:以A為坐標原點,建立如圖所示的空間直角坐標系A﹣xyz,

則B(2 ,0,0),P(0,0,2),C(﹣ ,3,0),D(﹣ ,1,0),

=(﹣3 ,3,0), =(﹣ ,3,﹣2), =(0,2,0).

設平面PBC的一個法向量 =(x,y,z),

,令x=1,得 =(1, , ).

同理可求平面PCD的一個法向量 =(2,0,﹣ ).

∴cos >= = =﹣

∵二面角B﹣PC﹣D為鈍二面角,

∴二面角B﹣PC﹣D的余弦值為﹣


【解析】(1)推導出PA⊥AE,AE⊥AB.由此能證明AB⊥PE.(2)以A為坐標原點,建立空間直角坐標系A﹣xyz,利用向量法能求出二面角B﹣PC﹣D的余弦值.
【考點精析】根據(jù)題目的已知條件,利用棱錐的結(jié)構特征的相關知識可以得到問題的答案,需要掌握側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2019年,河北等8省公布了高考改革綜合方案將采取“3+1+2”模式,即語文、數(shù)學、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學、生物中選擇2門.為了更好進行生涯規(guī)劃,甲同學對高一一年來的七次考試成績進行統(tǒng)計分析,其中物理、歷史成績的莖葉圖如圖所示.

(1)若甲同學隨機選擇3門功課,求他選到物理、地理兩門功課的概率;

(2)試根據(jù)莖葉圖分析甲同學應在物理和歷史中選擇哪一門學科?并說明理由;

(3)甲同學發(fā)現(xiàn),其物理考試成績(分)與班級平均分(分)具有線性相關關系,統(tǒng)計數(shù)據(jù)如下表所示,試求當班級平均分為50分時,其物理考試成績.

參考數(shù)據(jù): ,,.

參考公式:,(計算時精確到).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 恰有兩個零點,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的右焦點F(1,0),過F的直線l與橢圓C交于A,B兩點,當l垂直于x軸時,|AB|=3.
(1)求橢圓C的標準方程;
(2)在x軸上是否存在點T,使得 為定值?若存在,求出點T坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,上異于的點.

(1)證明:平面平面;

(2)當三棱錐體積最大時,求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=emx﹣lnx﹣2.
(1)若m=1,證明:存在唯一實數(shù)t∈( ,1),使得f′(t)=0;
(2)求證:存在0<m<1,使得f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為的函數(shù),若滿足;② ,且時,都有;③ ,且時,都有,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個函數(shù):;② ; ③;④.則其中是“偏對稱函數(shù)”的函數(shù)序號為 _______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標準差小于乙地該月11時的氣溫的標準差
④甲地該月11時的氣溫的標準差大于乙地該月11時的氣溫的標準差
其中根據(jù)莖葉圖能得到的正確結(jié)論的編號為(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在點處的切線方程為,求,的值;

(2)當時,在區(qū)間上至少存在一個,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案