已知雙曲線的焦點(diǎn)在y軸上,并且雙曲線過P1(2,)P2()兩點(diǎn),

求雙曲線的標(biāo)準(zhǔn)方程.

 

答案:
解析:

解:因?yàn)殡p曲線的焦點(diǎn)在y軸上,所以設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為

(a0,b0)         

因?yàn)辄c(diǎn)P1、P2在雙曲線上,所以點(diǎn)P1、P2的坐標(biāo)適合方程,

(2,)、(,4)分別代入方程中,得方程組

            

m=,則方程組化為

解這個方程組得

16.

所以所求雙曲線的標(biāo)準(zhǔn)方程為

.

 


提示:

考查用待定系數(shù)法求雙曲線方程的基本技能.在使用待定系數(shù)法時,是將標(biāo)準(zhǔn)方程中的a、b作為待定系數(shù),通過解方程組的辦法求出a、b,由于a、b在分母上,并且是二次的,這種情況學(xué)生以前沒有接觸過,是一個難點(diǎn),本題采用換元法,把方程化為二元一次方程組,體現(xiàn)了由繁至簡的化歸思想。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的焦點(diǎn)在y軸上,兩頂點(diǎn)間的距離為4,漸近線方程為y=±2x.
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)(Ⅰ)中雙曲線的焦點(diǎn)F1,F(xiàn)2關(guān)于直線y=x的對稱點(diǎn)分別為F1′,F(xiàn)2′,求以F1′,F(xiàn)2′為焦點(diǎn),且過點(diǎn)P(0,2)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長為8,離心率e=
2
,過雙曲線的弦AB被點(diǎn)P(4,2)平分;
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求弦AB所在直線方程;
(3)求直線AB與漸近線所圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的焦點(diǎn)在y軸上,并且雙曲線經(jīng)過點(diǎn)A(2, )及點(diǎn)B(,4),則雙曲線的方程為…(  )

A.=1                         B.=1

C.                          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的焦點(diǎn)在y軸上,并且雙曲線過點(diǎn)(3,-4)、(,5),則雙曲線的標(biāo)準(zhǔn)方程為(    )

A.=1                             B.=-1

C.=1                             D.=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的焦點(diǎn)在y軸上,并且雙曲線過點(diǎn)(3,-4)、(,5),則雙曲線的標(biāo)準(zhǔn)方程為(    )

A.=1                             B.=-1

C.=1                             D.=-1

查看答案和解析>>

同步練習(xí)冊答案