分析 (1)先判斷函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,再得到f(-x)=f(x),結(jié)合偶函數(shù)的定義,可得結(jié)論;
(2)若f(a)=$\frac{si{n}^{4}a+co{s}^{4}a}{{cos}^{2}a}$=$\frac{5}{2}$,則cos2α=$\frac{1}{2}$,結(jié)合a∈(0,$\frac{π}{2}$),可得a得值.
解答 解:(1)∵函數(shù)f(x)=$\frac{si{n}^{4}x+co{s}^{4}x}{sin(\frac{π}{2}+x)sin(\frac{π}{2}-x)}$=$\frac{si{n}^{4}x+co{s}^{4}x}{{cos}^{2}x}$的定義域?yàn)閧x|x≠$\frac{π}{2}$+kπ,k∈Z}關(guān)于原點(diǎn)對(duì)稱,
且f(-x)=$\frac{si{n}^{4}(-x)+co{s}^{4}(-x)}{{cos}^{2}(-x)}$=$\frac{si{n}^{4}x+co{s}^{4}x}{{cos}^{2}x}$=f(x),
故函數(shù)f(x)為偶函數(shù);
(2)若f(a)=$\frac{si{n}^{4}a+co{s}^{4}a}{{cos}^{2}a}$=$\frac{5}{2}$,
則$\frac{(1-{cos}^{2}a)^{2}+co{s}^{4}a}{{cos}^{2}a}$=$\frac{5}{2}$,
解得:cos2α=$\frac{1}{2}$,或cos2α=2(舍去),
又∵a∈(0,$\frac{π}{2}$),
∴cosa=$\frac{\sqrt{2}}{2}$,
∴a=$\frac{π}{4}$
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,函數(shù)求值,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a>1,則函數(shù)y=ax與y=logax在定義域內(nèi)均為增函數(shù) | |
B. | 函數(shù)y=3x與y=log3x圖象關(guān)于直線y=x對(duì)稱 | |
C. | $y={log_a}{x^2}$與y=2logax表示同一函數(shù) | |
D. | 若0<a<1,0<m<n<1,則一定有l(wèi)ogam>logan>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com