【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:m),(1)將y表示為x的函數(shù)(2)試確定x , 使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用
(1)將y表示為x的函數(shù):
(2)試確定x , 使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

【答案】
(1)

解:設(shè)矩形的另一邊長(zhǎng)為am,

則y=45x+180(x﹣2)+1802a=225x+360a﹣360.

由已知ax=360,得 ,

所以


(2)

解:因?yàn)?/span>x>0,所以 ,

所以 ,當(dāng)且僅當(dāng) 時(shí),等號(hào)成立.

即當(dāng)x=24m時(shí),修建圍墻的總費(fèi)用最小,最小總費(fèi)用是10440元.


【解析】分析:(1)設(shè)矩形的另一邊長(zhǎng)為am,則根據(jù)圍建的矩形場(chǎng)地的面積為360m2 , 易得 ,此時(shí)再根據(jù)舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,我們即可得到修建圍墻的總費(fèi)用y表示成x的函數(shù)的解析式;(2)根據(jù)(1)中所得函數(shù)的解析式,利用基本不等式,我們易求出修建此矩形場(chǎng)地圍墻的總費(fèi)用最小值,及相應(yīng)的x值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣1(a∈R).
(1)若對(duì)任意實(shí)數(shù)x,f(x)<0恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a>0時(shí),解關(guān)于x的不等式f(x)<2x﹣3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右頂點(diǎn)分別是,為直線(xiàn)上一點(diǎn)(點(diǎn)在軸的上方),直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為,直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為.

(1)若的面積是的面積的,求直線(xiàn)的方程;

(2)設(shè)直線(xiàn)與直線(xiàn)的斜率分別為,求證:為定值;

(3)若的延長(zhǎng)線(xiàn)交直線(xiàn)于點(diǎn),求線(xiàn)段長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右頂點(diǎn)分別是,為直線(xiàn)上一點(diǎn)(點(diǎn)在軸的上方),直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為,直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為.

(1)若的面積是的面積的,求直線(xiàn)的方程;

(2)設(shè)直線(xiàn)與直線(xiàn)的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列各函數(shù)中,最小值等于2的函數(shù)是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】E是正方形ABCD的邊CD的中點(diǎn),將△ADEAE旋轉(zhuǎn),則直線(xiàn)AD與直線(xiàn)BE所成角的余弦值的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,ABC是以BC為斜邊的等腰直角三角形,BCD是邊長(zhǎng)為2的正三角形.

(Ⅰ)當(dāng)AD為多長(zhǎng)時(shí),?

(Ⅱ)當(dāng)二面角BACD時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過(guò)邊界CD上的點(diǎn)E處鋪設(shè)一條直的灌溉水管EF,將綠地分成面積相等的兩部分.

(1)如圖①,若E為CD的中點(diǎn),F(xiàn)在邊界AB上,求灌溉水管EF的長(zhǎng)度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),函數(shù)圖象上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案