【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),直線與曲線交于兩點(diǎn),且,求的值.
【答案】(1);(2)
【解析】
(1)由曲線的極坐標(biāo)方程得,利用可得曲線的直角坐標(biāo)方程;(2)由直線的參數(shù)方程化為普通方程得,再求得直線的參數(shù)方程為(為參數(shù)),代入,整理得,利用韋達(dá)定理以及直線參數(shù)方程的幾何意義可得結(jié)果.
(1)由曲線的極坐標(biāo)方程得.
∵
∴曲線的直角坐標(biāo)方程為.
(2)由直線的參數(shù)方程為(為參數(shù)),化為普通方程得.
∵在直線上
∴直線的參數(shù)方程可設(shè)為(為參數(shù)),代入,整理得
,設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,則,∵,∴(a>0),∴.
故的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】歷史上,許多人研究過圓錐的截口曲線.如圖,在圓錐中,母線與旋轉(zhuǎn)軸夾角為,現(xiàn)有一截面與圓錐的一條母線垂直,與旋轉(zhuǎn)軸的交點(diǎn)到圓錐頂點(diǎn)的距離為,對(duì)于所得截口曲線給出如下命題:
①曲線形狀為橢圓;
②點(diǎn)為該曲線上任意兩點(diǎn)最長(zhǎng)距離的三等分點(diǎn);
③該曲線上任意兩點(diǎn)間的最長(zhǎng)距離為,最短距離為;
④該曲線的離心率為.其中正確命題的序號(hào)為 ( )
A. ①②④B. ①②③④C. ①②③D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得?ǎ◥蹏、富強(qiáng)福、和諧福、友善福,敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個(gè)社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動(dòng),則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:
(1)根據(jù)如上的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”?
(2)計(jì)算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);
(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒(dòng),該大學(xué)的學(xué)生會(huì)從集齊五福的學(xué)生中,選取2位男生和3位女生逐個(gè)進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對(duì)象中至少有一位男生的概率.
參考公式: .
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在梯形中(圖1),, , ,過、分別作的垂線,垂足分別為、,已知, ,將梯形沿、同側(cè)折起,使得, ,得空間幾何體(圖2).
(1)證明: 平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
B. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】底面為菱形且側(cè)棱垂直于底面的四棱柱中, , 分別是, 的中點(diǎn),過點(diǎn), , , 的平面截直四棱柱,得到平面四邊形, 為的中點(diǎn),且,當(dāng)截面的面積取最大值時(shí), 的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,共享單車已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評(píng)價(jià)反饋系統(tǒng),以了解用戶對(duì)車輛狀況和優(yōu)惠活動(dòng)的評(píng)價(jià).現(xiàn)從評(píng)價(jià)系統(tǒng)中選出條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),車輛狀況的優(yōu)惠活動(dòng)評(píng)價(jià)的列聯(lián)表如下:
(1)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與車輛狀況好評(píng)之間有關(guān)系?
(2)為了回饋用戶,公司通過向用戶隨機(jī)派送騎行券.用戶可以將騎行券用于騎行付費(fèi),也可以通過轉(zhuǎn)贈(zèng)給好友.某用戶共獲得了5張騎行券,其中只有2張是一元券.現(xiàn)該用戶從這5張騎行券中隨機(jī)選取2張轉(zhuǎn)贈(zèng)給好友,求選取的張中至少有1張是一元券的概率.
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)三月中旬生產(chǎn)A、B、C三種產(chǎn)品共3 000件,根據(jù)分層抽樣的結(jié)果,企業(yè)統(tǒng)計(jì)員制作了如下的統(tǒng)計(jì)表格:
產(chǎn)品類別 | A | B | C |
產(chǎn)品數(shù)量(件) | 1 300 | ||
樣本容量(件) | 130 |
由于不小心,表格中A、C產(chǎn)品的有關(guān)數(shù)據(jù)已被污染看不清楚,統(tǒng)計(jì)員記得A產(chǎn)品的樣本容量比C產(chǎn)品的樣本容量多10,根據(jù)以上信息,可得C的產(chǎn)品數(shù)量是( )
A.80B.800C.90D.900
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E、F分別為BC、AD的中點(diǎn),點(diǎn)M在線段PD上.
(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平
面ABCD所成的角相等,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com