定義在R上的偶函數(shù)y=f(x)在(-∞,0]上遞增,函數(shù)y=f(x)的一個零點為-
1
2
.求滿足f(log
1
4
x)≥0
的x的取值集合.
分析:利用函數(shù)是偶函數(shù),得到
1
2
也是函數(shù)的零點,然后利用函數(shù)單調(diào)性和奇偶性之間的關(guān)系解不等式即可.
解答:解:∵-
1
2
是函數(shù)的零點,∴f(-
1
2
)=0
,…(1分)
∵f(x)為偶函數(shù),∴f(
1
2
)=0
,…(2分)
∵f(x)在(-∞,0]上遞增,f(log
1
4
x)≥f(-
1
2
)
…(4分)
∴0≥log
1
4
x
≥-
1
2
,∴1≤x≤2,…(7分)
∵f(x)為偶函數(shù),∴f(x)在[0,+∞)上單調(diào)減,…(8分)
f(log
1
4
x)≥f(
1
2
)
,∴0≤log
1
4
x
1
2
,∴
1
2
≤x≤1,∴
1
2
≤x≤2.…(11分)
故x的取值集合為{x|
1
2
≤x≤2}.…(12分)
點評:本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,考查函數(shù)的綜合性質(zhì)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

17、定義在R上的偶函數(shù)y=f(x)滿足:
①對任意x∈R都有f(x+2)=f(x)+f(1)成立;
②f(0)=-1;
③當x∈(-1,0)時,都有f(x)<0.
若方程f(x)=0在區(qū)間[a,3]上恰有3個不同實根,則實數(shù)a的取值范圍是
(-3,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)滿足:①對x∈R都有f(x+6)=f(x)+f(3);②當x1,x2∈[0,3]且x1≠x2時,都有
f(x1)-f(x2)x1-x2
>0
,若方程f(x)=0在區(qū)間[a,8-a]上恰有3個不同實根,實數(shù)a的取值范圍是
(-7,-3)
(-7,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)在(-∞,0]上遞增,函數(shù)f(x)的一個零點為-
1
2
,求滿足f(log
1
9
x)≥0的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)滿足f(x+2)=f(x),且當x∈(0,1]時單調(diào)遞增,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f (x)滿足f ( x+2 )=-f (x)對所有實數(shù)x都成立,且在[-2,0]上單調(diào)遞增,a=f(
3
2
),b=f(
7
2
),c=f(log 
1
2
8),則a,b,c的由大到小順序是(用“>”連 結(jié))
 

查看答案和解析>>

同步練習(xí)冊答案