一個(gè)口袋中裝有n個(gè)紅球(n≥4且n∈N)和5個(gè)白球,從中摸兩個(gè)球,兩個(gè)球顏色相同則為中獎(jiǎng).
(Ⅰ)若一次摸兩個(gè)球,試用n表示一次摸球中獎(jiǎng)的概率p;
(Ⅱ)若一次摸一個(gè)球,當(dāng)n=4時(shí),求二次摸球(每次摸球后不放回)中獎(jiǎng)的概率;
(Ⅲ)在(Ⅰ)的條件下,記三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有二次中獎(jiǎng)的概率為P,當(dāng)n取多少時(shí),P最大?
分析:(Ⅰ)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是一次摸獎(jiǎng)從n+5個(gè)球中任選兩個(gè),滿(mǎn)足條件的事件是兩球不同色有C
n1C
51種,根據(jù)等可能事件的概率得到結(jié)果.
(Ⅱ)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件數(shù)C
81C
91,滿(mǎn)足條件的事件是C
41C
31+C
51C
41,根據(jù)等可能事件的概率得到結(jié)果.
(III)設(shè)每次摸獎(jiǎng)中獎(jiǎng)的概率為p,則三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回),恰有二次中獎(jiǎng)的概率為P為P=P
3(2)=C
32•p
2•(1-p)=3(p
2-p
3),當(dāng)
p=時(shí),P取得最大值.得到n的值.
解答:解:(Ⅰ)由題意知本題是一個(gè)等可能事件的概率,
試驗(yàn)發(fā)生包含的事件是一次摸獎(jiǎng)從n+5個(gè)球中任選兩個(gè),有C
n+52種,
滿(mǎn)足條件的事件是兩球不同色有C
n1C
51種,
根據(jù)等可能事件的概率得到一次摸獎(jiǎng)中獎(jiǎng)的概率
p=1-=(Ⅱ)若n=4,由題意知本題是一個(gè)等可能事件的概率
試驗(yàn)發(fā)生包含的事件數(shù)C
81C
91,
滿(mǎn)足條件的事件是C
41C
31+C
51C
41得到二次摸獎(jiǎng)(每次摸獎(jiǎng)后不放回)中獎(jiǎng)的概率是
P==答:二次摸球(每次摸球后不放回)中獎(jiǎng)的概率為
..
(Ⅲ)設(shè)每次摸獎(jiǎng)中獎(jiǎng)的概率為p,則三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)
恰有二次中獎(jiǎng)的概率為P為P=P
3(2)=C
32•p
2•(1-p)=3(p
2-p
3),0<p<1,..
當(dāng)
p=時(shí),P取得最大值.
又
p=1-=,解得n=20
答:當(dāng)n=20時(shí),三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有二次中獎(jiǎng)的概率最大
點(diǎn)評(píng):本題考查等可能事件的概率,考查等可能事件的概率的應(yīng)用,這種問(wèn)題可以出現(xiàn)在大型考試的解答題目中,是一個(gè)綜合題.