數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意,總有成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,且,求證:對任意實(shí)數(shù)是常數(shù),

(1)
(2)證明略
(3)
解:由已知:對于,總有成立………(1)
  (2)  ………………………………2分
(1)—(2)得

均為正數(shù),   
數(shù)列是公差為1的等差數(shù)列   ………………………………3分
時(shí),,解得
  ……………………………………………………4分
(2)證明:對任意實(shí)數(shù)和任意正整數(shù),總有……6分

 ………………8分
(3)解:由已知
,,

易得
猜想時(shí),是遞減數(shù)列  …………………………………………10分
,則
當(dāng)時(shí),,則,即
內(nèi)為單調(diào)遞減函數(shù),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
等比數(shù)列{}的前項(xiàng)和為,已知5、2、成等差數(shù)列.
(Ⅰ)求{}的公比;
(Ⅱ)當(dāng)-=3且時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是等差數(shù)列,且,,則 
A.-2   B.-7C.-8  D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列中,,則的值是          (    )
A.15B.30 C.31D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列﹛﹜中,,前n項(xiàng)和滿足+1-=()n+1  (nN*)
(1)求數(shù)列﹛﹜的通項(xiàng)公式以及前n項(xiàng)和
(2)若,t( +), 3(+)成等差數(shù)列,求實(shí)數(shù)t的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的公差,其前n項(xiàng)和為成等比數(shù)列。
(I)求的通項(xiàng)公式;
(II)記,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列,是等差數(shù)列,則有數(shù)列也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地:若數(shù)列是等比數(shù)列,且,則有_____      _____也是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知數(shù)列滿足
(I)求的通項(xiàng)公式;
(II)設(shè)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是等差數(shù)列,是互不相等的正整數(shù),有正確的結(jié)論:
,類比上述性質(zhì),相應(yīng)地,若等比數(shù)列,是互不相等的正整數(shù),有                                       

查看答案和解析>>

同步練習(xí)冊答案