1.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|≥1,|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=3,則|$\overrightarrow{c}$|的最小值是1,最大值是3.

分析 設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,由于|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,可得$\overrightarrow{a}⊥\overrightarrow$.不妨設(shè)$\overrightarrow{a}$=(m,0)(m≥1).$\overrightarrow$=(0,n)(n>0).$\overrightarrow{c}$=(x,y).利用|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=3,可得m2+n2=4,$(x-\frac{m}{2})^{2}$+$(y-\frac{n}{2})^{2}$=4.即可得出|$\overrightarrow{c}$|的最值.

解答 解:設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,
∵|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,
∴$\overrightarrow{a}⊥\overrightarrow$.
不妨設(shè)$\overrightarrow{a}$=(m,0)(m≥1).
$\overrightarrow$=(0,n)(n>0).$\overrightarrow{c}$=(x,y).
∵|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=3,
∴m2+n2=4,
x(x-m)+y(y-n)=3,即$(x-\frac{m}{2})^{2}$+$(y-\frac{n}{2})^{2}$=4.
∴|$\overrightarrow{c}$|=$\sqrt{{x}^{2}+{y}^{2}}$∈[2-1,2+1]=[1,3].
因此$|\overrightarrow{c}|$的最小值是1,最大值是3.
故答案分別為:1;3.

點評 本題考查了向量數(shù)量積運算及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=$\frac{1-x}{1+x}$,x∈(-1,1).求證:
(1)f($\frac{1}{a}$)=-f(a)(a≠0);
(2)lgf(-a)=-lgf(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=4x-${\;}^{\frac{1}{2}}$-3×2x+5(0≤x≤2)的值域是[$\frac{1}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)F1、F2是橢圓Γ的兩個焦點,S是以F1為中心的正方形,則S的四個頂點中能落在橢圓Γ上的個數(shù)最多有2個(S的各邊可以不與Γ的對稱軸平行).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.兩條異面直線a,b所成角為60°,則過一定點P,與直線a,b都成60°角的直線有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2$\sqrt{3}{cos^2}ωx+sin2ωx-\sqrt{3}$(ω>0),相鄰兩對稱軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)y=f(x)的解析式;
(2)把函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個單位,再縱坐標(biāo)不變橫坐標(biāo)縮短到原來的$\frac{1}{2}$后得到函數(shù)g(x)的圖象,當(dāng)$x∈[{-\frac{π}{2},\;\;\frac{π}{12}}]$時,求函數(shù)y=g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知集合M={x|x2-4x+3<0},N={x|log2x<1},則M∪N=(0,3),M∩N=(1,2),∁RM=(-∞,1]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若不等式x2-ax-1≥0對x∈[1,3]恒成立,則實數(shù)a的取值范圍為( 。
A.a≤0B.a≤$\frac{8}{3}$C.0$≤a≤\frac{8}{3}$D.a$≤0或a≥\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.頂點在原點且以雙曲線$\frac{x^2}{3}-{y^2}=1$的左準(zhǔn)線為準(zhǔn)線的拋物線方程是y2=6x.

查看答案和解析>>

同步練習(xí)冊答案