求與雙曲線
x2
4
-
y2
2
=1
具有共同漸近線,且經(jīng)過(guò)點(diǎn)P(2,1)的雙曲線的標(biāo)準(zhǔn)方程.
分析:設(shè)出雙曲線方程,代入點(diǎn)P的坐標(biāo),即可求得結(jié)論.
解答:解:由題意,可設(shè)所求雙曲線的方程為
x2
4
-
y2
2

∵雙曲線經(jīng)過(guò)點(diǎn)P(2,1),代入得
4
4
-
1
2
,解得λ=
1
2

∴所求方程為
x2
2
-y2=1
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,考查雙曲線的幾何性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的方程為
x2
4
+y2=1,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+
2
與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>2(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄AC過(guò)點(diǎn)A(-2,0),且與圓M:(x-2)2+y2=64相內(nèi)切
(1)求動(dòng)圓C的圓心的軌跡方程;
(2)設(shè)直線l:y=kx+m(其中k,m∈Z)與(1)所求軌跡交于不同兩點(diǎn)B,D,與雙曲線
x2
4 
-
y2
12
=1
交于不同兩點(diǎn)E,F(xiàn),問(wèn)是否存在直線l,使得向量
DF
+
BE
=
0
,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線與橢圓
x2
4
+y2=1
共焦點(diǎn),它們的離心率之和為
3
3
2

(1)求橢圓與雙曲線的離心率e1、e2;
(2)求雙曲線的標(biāo)準(zhǔn)方程與漸近線方程;
(3)已知直線l:y=
1
2
x+m
與橢圓有兩個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的方程是
x2
4
+y2=1
,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),C2的左、右頂點(diǎn)分別為C1的左、右焦點(diǎn).
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+
2
與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A,B,且
OA
OB
>2
(O為原點(diǎn)),求k的取值范圍;
(3)設(shè)P1,P2分別是C2的兩條漸近線上的點(diǎn),點(diǎn)M在C2上,且
OM
=
1
2
(
OP1
+
OP2
)
,求△P1OP2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:南充一模 題型:解答題

已知?jiǎng)訄AC過(guò)點(diǎn)A(-2,0),且與圓M:(x-2)2+y2=64相內(nèi)切
(1)求動(dòng)圓C的圓心的軌跡方程;
(2)設(shè)直線l:y=kx+m(其中k,m∈Z)與(1)所求軌跡交于不同兩點(diǎn)B,D,與雙曲線
x2
4 
-
y2
12
=1
交于不同兩點(diǎn)E,F(xiàn),問(wèn)是否存在直線l,使得向量
DF
+
BE
=
0
,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案