如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個室,圖2表示蜂巢有2層共有7個室,圖3表示蜂巢有3層共有19個室,圖4表示蜂巢有4層共有37個室. 觀察蜂巢的室的規(guī)律,指出蜂巢有n層時共有_______個室.

         

 

【答案】

【解析】

試題分析:根據(jù)圖象的規(guī)律可得相鄰兩項(xiàng)的差的規(guī)律可分析得出f(n)-f(n-1)=6(n-1)由于f(2)-f(1)=7-1=6,

f(3)-f(2)=19-7=2×6,

f(4)-f(3)=37-19=3×6,

f(5)-f(4)=61-37=4×6,…

因此,當(dāng)n≥2時,有f(n)-f(n-1)=6(n-1),

所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.

又f(1)=1=3×12-3×1+1,所以f(n)=3n2-3n+1.

故答案為:3n2-3n+1

考點(diǎn):本試題主要考查了數(shù)列的問題、歸納推理.屬于基礎(chǔ)題

點(diǎn)評:解決該試題的關(guān)鍵是根據(jù)圖象的規(guī)律可得相鄰兩項(xiàng)的差的規(guī)律可分析得出f(n)-f(n-1)=6(n-1),進(jìn)而根據(jù)合并求和的方法求得f(n)的表達(dá)式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個室,圖2表示蜂巢有2層共有7個室,圖3表示蜂巢有3層共有19個室,圖4表示蜂巢有4層共有37個室.觀察蜂巢的室的規(guī)律,指出蜂巢有n層時共有
3n2-3n+1
3n2-3n+1
個室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個室,圖2表示蜂巢有2層共有7個室,圖3表示蜂巢有3層共有19個室,圖4表示蜂巢有4層共有37個室.觀察蜂巢的室的規(guī)律,指出蜂巢有n層時共有________個室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建師大附中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個室,圖2表示蜂巢有2層共有7個室,圖3表示蜂巢有3層共有19個室,圖4表示蜂巢有4層共有37個室.觀察蜂巢的室的規(guī)律,指出蜂巢有n層時共有    個室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建師大附中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個室,圖2表示蜂巢有2層共有7個室,圖3表示蜂巢有3層共有19個室,圖4表示蜂巢有4層共有37個室.觀察蜂巢的室的規(guī)律,指出蜂巢有n層時共有    個室.

查看答案和解析>>

同步練習(xí)冊答案