5.下面四個命題:
①已知函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{x}\;,x≥0\;\\ \sqrt{-x}\;,x<0\;\end{array}\right.$且f(a)+f(4)=4,那么a=-4;
②要得到函數(shù)$y=sin({2x+\frac{π}{3}})$的圖象,只要將y=sin2x的圖象向左平移$\frac{π}{3}$單位;
③若定義在(-∞,+∞)上的函數(shù)f(x)滿足f(x+1)=-f(x),則f(x)是周期函數(shù);
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0解集{x|x<-1}.
其中正確的是③.

分析 ①已知函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{x}\;,x≥0\;\\ \sqrt{-x}\;,x<0\;\end{array}\right.$,分a<0,a>0,利用f(a)+f(4)=4,即可求出a;
②要得到函數(shù)$y=sin({2x+\frac{π}{3}})$的圖象,只要將y=sin2x的圖象向左平移$\frac{π}{6}$單位;
③利用f(x)滿足f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以f(x)是以2為周期的周期函數(shù);④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則f(1)=0,在(-∞,0)為增函數(shù),即可解不等式f(x)<0.

解答 解:①已知函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{x}\;,x≥0\;\\ \sqrt{-x}\;,x<0\;\end{array}\right.$,a<0時,f(a)+f(4)=4,那么a=-4;a>0時,f(a)+f(4)=4,那么a=4,故不正確;
②要得到函數(shù)$y=sin({2x+\frac{π}{3}})$的圖象,只要將y=sin2x的圖象向左平移$\frac{π}{6}$單位,故不正確;
③若定義在(-∞,+∞)上的函數(shù)f(x)滿足f(x+1)=-f(x),則f(x+2)=-f(x+1)=f(x),所以f(x)是周期函數(shù),周期為2;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則f(1)=0,在(-∞,0)為增函數(shù),不等式f(x)<0等價于f(x)<f(-1)或f(x)<f(1),
解集{x|x<-1}∪{x|0<x<1},故不正確.
故答案為:③.

點評 本題考查命題的真假的判斷,考查分段函數(shù),函數(shù)的圖象變換,周期性,奇偶性,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若全集U=R,集合A={x|x2-x-2>0},則∁UA=( 。
A.(-1,2)B.(-2,1)C.[-1,2]D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.當(dāng)實數(shù)m取何值時,方程4x2+(m-2)x+(m-5)=0分別有:
(1)正根絕對值大于負根絕對值?
(2)兩根都大于1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.從三角形內(nèi)部任意一點向各邊引垂線,其長度分別為d1,d2,d3,且相應(yīng)各邊上的高分別為h1,h2,h3,求證:$\frac{tznbzrh_{1}}{{h}_{1}}$+$\frac{cimatqr_{2}}{{h}_{2}}$+$\frac{2pp1288_{3}}{{h}_{3}}$=1.類比以上性質(zhì),給出空間四面體的一個猜想,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(cos$\frac{3θ}{2}$,sin$\frac{3θ}{2}$),$\overrightarrow$=(cos$\frac{θ}{2}$,-sin$\frac{θ}{2}$),θ∈[0,$\frac{π}{3}$],
(1)求$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}+\overrightarrow|}$的最大值和最小值;
(2)若|k$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|(k∈R),求k的取值范圍.
(3)設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{a}x,0≤x≤a\\ \frac{1}{1-a}(1-x),a<x≤1\end{array}\right.$a為常數(shù)且a∈(0,1).若x0滿足f[f(x0)]=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點.證明函數(shù)f(x)有且僅有兩個二階周期點,并求二階周期點x1,x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a、b、c∈R+,且a+b+c=1,求證:$\sqrt{4a+1}$+$\sqrt{4b+1}$+$\sqrt{4c+1}$≤$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知b>a>0,且a+b=1,那么( 。
A.2ab<$\frac{{a}^{4}-^{4}}{a-b}$<$\frac{a+b}{2}$<bB.2ab<$\frac{a+b}{2}$<$\frac{{a}^{4}-^{4}}{a-b}$<b
C.$\frac{{a}^{4}-^{4}}{a-b}$<2ab<$\frac{a+b}{2}$<bD.2ab<$\frac{a+b}{2}$<b<$\frac{{a}^{4}-^{4}}{a-b}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某高校的自主招生考試分為筆試和面試,筆試有語、數(shù)、外、綜合共四個科目的考試,面試有時政評論、創(chuàng)新設(shè)計共兩個項目的考核,筆試中至少通過3科才可進入面試,否則淘汰;面試中只通過一項可獲得高考報考降分錄取資格,兩項都通過可獲得保送資格.已知每位考生在筆試中通過每科考試的概率均為$\frac{2}{3}$,在面試中通過每項考核的概率均為$\frac{1}{2}$,且相互獨立.
(1)求參加考試的某學(xué)生獲得降分錄取資格的概率;
(2)某中學(xué)選送了3名學(xué)生參加考試,其中獲得降分錄取和保送資格的人數(shù)之和記為ξ,求ξ的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}中,a1>0,且滿足an=$\left\{\begin{array}{l}{2{a}_{n-1}({a}_{n-1}≤\frac{1}{2})}\\{1-{a}_{n-1}({a}_{n-1}>\frac{1}{2})}\end{array}\right.$,若a4=1,則a1的值為( 。
A.$\frac{1}{8}$B.$\frac{3}{8}$或$\frac{3}{4}$C.$\frac{1}{8}$或$\frac{3}{4}$D.$\frac{1}{8}$或$\frac{3}{8}$

查看答案和解析>>

同步練習(xí)冊答案