已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)為F1(-c,0)、F2(c,0),若存在動(dòng)點(diǎn)Q,滿(mǎn)足|
F1Q
|=2a,且△F1QF2的面積等于b2,則橢圓離心率的取值范圍是
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:確定Q的軌跡方程,利用存在點(diǎn)Q,使得△F1QF2的面積等于b2,確定Q的縱坐標(biāo),即可求橢圓離心率的取值范圍.
解答: 解:設(shè)Q(x,y),則
∵|
F1Q
|=2a,∴(x+c)2+y2=4a2
∴|y|≤2a
∵存在點(diǎn)Q,使得△F1QF2的面積等于b2,
1
2
•2c•|y|=b2,
∴|y|=
b2
c

b2
c
≤2a,∴a2-c2≤2ac,
∴e2+2e-1≥0
∴e
2
-1
,或e≤-
2
-1

∵0<e<1
2
-1
<e<1.
故答案為:(
2
-1,1
).
點(diǎn)評(píng):本題考查橢圓的定義,考查橢圓的性質(zhì),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿(mǎn)足約束條件
x-1≤0
x+y-1≥0
y-2≤0
,則z=2x+3y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1+mi
i
=1+ni(m,n∈R,i為虛數(shù)單位),則mn的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b∈{1,2,…,8,9},且a<b,若ab可以寫(xiě)成兩個(gè)質(zhì)數(shù)的乘積,則這樣的數(shù)對(duì){a,b}有
 
對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)F(x)在[a,b]上有定義,若對(duì)于任意x1、x2在定義域內(nèi)有F(
x1+x2
2
)≤0.5[F(x1)+F(x2)],則稱(chēng)F(x)在[a,b]有性質(zhì)P.設(shè)F(x)在[1,3]上具有性質(zhì)P,現(xiàn)給出一下命題:
A.F(x)在[1,3]上的圖象是連續(xù)不斷的;
B.F(x2)在[1,
3
]上有性質(zhì)P;
C.若F(x)在x=2時(shí)取得最大值1,則F(x)=1,x∈[1,3];
D.對(duì)任意x1,x2,x3,x4∈[1,3],有F(
x1+x2+x3+x4
4
)≤0.25[F(x1)+F(x2)+F(x3)+F(x4)].
其中,真命題有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和Sn=2n-1+a,則a等于( 。
A、-
1
2
B、
1
2
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)a,b的等比中項(xiàng)是2,且m=b+
1
a
,n=a+
1
b
,則m+n的最小值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合S={x|x2≤4},T={x|-3<x<1},則S∩T=( 。
A、(-3,2]
B、(1,2]
C、[-2,1)
D、[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)Z=
1
2
+
3
2
i,則
z
.
z
=( 。
A、-z
B、-
.
z
C、z
D、
.
z

查看答案和解析>>

同步練習(xí)冊(cè)答案