在直線、與圓分別相切于兩點則四邊形的面積的最小值為(   )

                                       

 

【答案】

B

【解析】因為點在直線、與圓分別相切于、兩點則四邊形的面積的最小值即為當點P到圓心距離最短時的情況,因此可以解的為8.選B。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1:4x+y=0,直線l2:x+y-1=0以及l(fā)2上一點P(3,-2).
(Ⅰ)求圓心M在l1上且與直線l2相切于點P的圓⊙的方程.
(Ⅱ)在(Ⅰ)的條件下;若直線l1分別與直線l2、圓⊙依次相交于A、B、C三點,利用代數(shù)法驗證:|AP|2=|AB|•|AC|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4,圓O與x軸交于A,B兩點,過點B的圓的切線為l,P是圓上異于A,B的一點,PH垂直于x軸,垂足為H,E是PH的中點,延長AP,AE分別交l于F,C.
(1)若點P(1,
3
),求以FB為直徑的圓的方程,并判斷P是否在圓上;
(2)當P在圓上運動時,證明:直線PC恒與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省齊齊哈爾市高三三模文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓的中心在原點,其上、下頂點分別為,點在直線上,點到橢圓的左焦點的距離為.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設(shè)是橢圓上異于的任意一點,點軸上的射影為,的中點,直線交直線于點,的中點,試探究:在橢圓上運動時,直線與圓:的位置關(guān)系,并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題

若圓過點且與直線相切,設(shè)圓心的軌跡為曲線,為曲線上的兩點,點,且滿足.

(1)求曲線的方程;

(2)若,直線的斜率為,過、兩點的圓與拋物線在點處有共同的切線,求圓的方程;

(3)分別過、作曲線的切線,兩條切線交于點,若點恰好在直線上,求證:均為定值.

 

查看答案和解析>>

同步練習(xí)冊答案