【題目】在一個半圓中有兩個互切的內(nèi)切半圓,由三個半圓弧圍成曲邊三角形,作兩個內(nèi)切半圓的公切線把曲邊三角形分隔成兩塊,阿基米德發(fā)現(xiàn)被分隔的這兩塊的內(nèi)切圓是同樣大小的,由于其形狀很像皮匠用來切割皮料的刀子,他稱此為“皮匠刀定理”,如圖,若,則陰影部分與最大半圓的面積比為(

A.B.

C.D.

【答案】B

【解析】

設(shè),則,,建立平面直角坐標系,分別求出各點坐標,,,,,設(shè)兩個小圓圓心,,則根據(jù)圓與圓內(nèi)切,解得.同理,得,由圓與圓內(nèi)切,得,于是阿基米德“皮匠刀定理”得證.再對面積求比即可.

解:設(shè),則,,建立如圖所示的坐標系,

,,,,設(shè),,

,得,所以,

由圓與圓內(nèi)切,得,解得.

同理,得,

由圓與圓內(nèi)切,得,解得,

于是阿基米德“皮匠刀定理”得證.

,

所以.

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為,為參數(shù)),曲線的參數(shù)方程為為參數(shù)),直線與曲線交于,兩點.

(1)以坐標原點為極點,軸正半軸為極軸建立極坐標系,求曲線的極坐標方程;

(2)若,點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過其焦點的直線與拋物線相交于兩點,滿足.

1)求拋物線的方程;

2)已知點的坐標為,記直線、的斜率分別為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】邊長為2的正方形上有一點,記的最大值為,最小值為,則

A.8B.6C.4D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知直線與圓O:相切.

(1)直線l過點(2,1)且截圓O所得的弦長為,求直線l的方程;

(2)已知直線y=3與圓O交于A,B兩點,P是圓上異于A,B的任意一點,且直線AP,BPy軸相交于M,N點.判斷點M、N的縱坐標之積是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,是曲線段是參數(shù),)的左、右端點,上異于的動點,過點作直線的垂線,垂足為.

1)建立適當?shù)臉O坐標系,寫出點軌跡的極坐標方程;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域,部分對應(yīng)值如表,的導函數(shù)的圖象如圖所示,下列關(guān)于函數(shù)的結(jié)論正確的是(

0

4

5

1

2

2

1

A.函數(shù)的極大值點有2

B.函數(shù)上是減函數(shù)

C.時,的最大值是2,那么的最大值為4

D.時,函數(shù)4個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:過點,且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)若過原點的直線與橢圓C交于P、Q兩點,且在直線上存在點M,使得為等邊三角形,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,,是曲線段是參數(shù),)的左、右端點,上異于的動點,過點作直線的垂線,垂足為.

1)建立適當?shù)臉O坐標系,寫出點軌跡的極坐標方程;

2)求的最大值.

查看答案和解析>>

同步練習冊答案