<li id="omrxu"></li>
<noscript id="omrxu"><th id="omrxu"></th></noscript>

已知集合A={x|x=3n+1,n∈Z},B={x|x=3n+2,n∈Z},M={x|x=6n+3,n∈Z},對于任意a∈A,b∈B,是否一定有a+b=m且m∈M?
考點:元素與集合關系的判斷
專題:集合
分析:根據已知條件知:若a∈A,b∈B,則一定存在n1,n2∈z,使得a=3n1+1,b=3n2+1,所以a+b=3(n1+n2)+3.而集合M的元素需滿足:x=6n+3=3•2n+3,顯然n1+n2不一定等于2n,所以不一定有a+b=m且m∈M.
解答: 解:∵a∈A,b∈B;2
∴分別存在n1,n2∈z使得:
a=3n1+1,b=3n2+2;
∴a+b=3(n1+n2)+3;
而集合M中的條件是:x=6n+3=3•2n+3;
∴要使a+b∈M,則n1+n2=2n,這顯然不一定;
∴不一定有a+b=m且m∈M.
點評:本題考查描述法表示集合,元素與集合的關系,以及描述法表示一個集合時,如何判斷一個元素是否是這個集合的元素.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有一個圓錐的側面展開圖是一個半徑為5、圓心角為
5
的扇形,在這個圓錐中內接一個高為x的圓柱.
(1)求圓錐的體積;
(2)當x為何值時,圓柱的側面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果點P在平面區(qū)域 
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,點Q在曲線x2+(y+2)2=1上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若直線l在兩坐標軸上的截距相等,求直線l的方程;
(2)若直線l不經過第二象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,且an=
n+1
2
1
S1
+
1
S2
+…+
1
Sn
)(n∈N*
①求a1,a2,a3;
②求數(shù)列{an}的通項公式an
③若數(shù)列{bn}滿足b1=1,bn=
1
bn-1
+
1
an
(n≥2),求證:bn2<2+2(
1
2
b1+
1
3
b2+
1
4
b3+…+
1
n
bn-1)(n≥2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A={x|x2+x+a=0,B={x|x<0},已知A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)在區(qū)間(a,b)的零點按精確度為ε求出的結果與精確到ε求出的結果可以相等,則稱函數(shù)y=f(x)在區(qū)間(a,b)的零點為“和諧零點”.試判斷函數(shù)f(x)=x3+x2-2x-2在區(qū)間(1,1.5)上,按ε=0.1用二分法逐次計算,求出的零點是否為“和諧零點”.(參考數(shù)據f(1.25)=-0.984,f(1.375)=-0.260,f(1.438)=0.165,f(1.4065)=-0.052)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y>a2+1或y<a},B={y|2≤y≤4},若A∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知am-1+am+1-am2=0,S2m-1=38,求m的值.

查看答案和解析>>

同步練習冊答案