已知不等式kx2-2x+6k<0(k≠0)
(1)若不等式的解集為{x|x<-3或x>-2},求實(shí)數(shù)k的值;
(2)若不等式的解集為∅,求實(shí)數(shù)k的取值范圍.
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:(1)由題設(shè)條件,根據(jù)二次函數(shù)與方程的關(guān)系,得:k<0,且-3,-2為關(guān)于x的方程k x2-2x+6k=0的兩個(gè)實(shí)數(shù)根,再由韋達(dá)定理能求出k的值.
(2)由題意可知
k>0
△≤0
,解得即可.
解答: 解:(1)∵不等式kx2-2x+6k<0(k≠0)的解集為{x|x<-3或x>-2}
∴-3和-2是方程kx2-2x+6k=0的根 
-3+(-2)=
2
k

k=-
2
5
,
(2)∵不等式kx2-2x+6k<0(k≠0)的解集為Φ:
k>0
△≤0
k>0
4-24k2≤0
⇒k≥
6
6

所以實(shí)數(shù)k的取值范圍是[
6
6
,+∞)
,
點(diǎn)評(píng):本題考查一元二次不等式的解法及其應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費(fèi)支出x(百萬元)與銷售額y(百萬元)有如下對(duì)應(yīng)關(guān)系:則銷售額y(百萬元)關(guān)于廣告費(fèi)支出x(百萬元)的回歸直線方程是( 。
x78910111213
y969799100101103104
A、
y
=1.357x+86.43
B、
y
=1.257x+84.43
C、
y
=2.357x+86.43
D、
y
=1.357x+96.43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)不多總數(shù)
喜歡體育運(yùn)動(dòng)18bd
不喜歡體育運(yùn)動(dòng)ac23
總數(shù)262450
求認(rèn)為喜歡體育運(yùn)動(dòng)與認(rèn)為作業(yè)量的多少有關(guān)系的把握大約為多少?(如表是K2的臨界值表,供參考)
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,AB=AC=2,BC=2
3
,點(diǎn)D在BC邊上,∠ADC=45°,則AD的長度等于多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是拋物線y=ax2(a>0)準(zhǔn)線上任意一點(diǎn),過A點(diǎn)作拋物線的切線l1,l2,切點(diǎn)為P,Q.
(1)證明:直線PQ過定點(diǎn);
(2)設(shè)PQ中點(diǎn)為M,求|AM|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1
a
,
1
b
,
1
c
構(gòu)成公差不為0的等差數(shù)列,求證:a,b,c不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮等比數(shù)列{an}所有奇數(shù)項(xiàng)的和為36,偶數(shù)項(xiàng)的和為12,求此數(shù)列的首項(xiàng)和公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖過拋物線y2=4x焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),直線AO交拋物線準(zhǔn)線于C點(diǎn).
(1)求證:BC⊥y軸;
(2)求|AB|+|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
4
+
y2
2
=1
,Q是橢圓的右準(zhǔn)線l上一動(dòng)點(diǎn),直線OQ交橢圓C于A、B兩點(diǎn),圓O:x2+y2=4,QM、QN是圓O的兩條切線,M、N為切點(diǎn).
(1)求證:直線MN恒過橢圓C的右焦點(diǎn)F;
(2)若點(diǎn)P是橢圓上任意一點(diǎn),且直線AP、BP的斜率都存在,分別記為k1,k2,探究k1•k2是否為定值?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案